125 research outputs found

    Simultaneous evaluation of multiple microarray surface chemistries through real-time interferometric imaging.

    Full text link
    Surface chemistry is a crucial aspect for microarray modality biosensor development. The immobilization capability of the functionalized surface is indeed a limiting factor for the final yield of the binding reaction. In this work, we were able to simultaneously compare the functionality of protein ligands that were locally immobilized on different polymers, while on the same solid support, therefore demonstrating a new way of multiplexing. Our goal was to investigate, in a single experiment, both the immobilization efficiency of a group of reactive polymers and the resulting affinity of the tethered molecules. This idea was demonstrated by spotting many reactive polymers on a Si/SiO2 chip and depositing the molecular probes on the spots immediately after. As a proof of concept, we focused on which polymers would better immobilize a model protein (α-Lactalbumin) and a peptide (LAC-1). We successfully showed that this protocol is applicable to proteins and peptides with a good efficiency. By means of real-time binding measurements performed with the interferometric reflectance imaging sensor (IRIS), local functionalization proved to be comparable to the classical flat coating solution. The final outcome highlights the multiplexing power of this method: first, it allows to characterize dozens of polymers at once. Secondly, it removes the limitation, related to coated surfaces, that only molecules with the same functional groups can be tethered to the same solid support. By applying this protocol, many types of molecules can be studied simultaneously and immobilization for each probe can be individually optimized.766466 (INDEX) - Horizon 2020 Framework Programmehttps://s3-eu-west-1.amazonaws.com/itempdf74155353254prod/8976347/Simultaneous_Evaluation_of_Multiple_Microarray_Surface_Chemistries_Through_Real-Time_Interferometric_Imaging_v1.pdfFirst author draf

    Real-time polarimetric biosensing using macroporous alumina membranes

    Get PDF
    We report the first demonstration of real-time biosensing in free standing macroporous alumina membranes. The membranes with their 200 nm diameter pores are ideal candidates for biosensing applications where fast response times for small sample volumes are needed as they allow analytes to flow through the pores close to the bioreceptors immobilized on the pores walls. A bulk refractive index sensitivity of 5.2×10-6 refractive index units was obtained from signal responses to different concentrations of NaCl solutions flowing through the pores. Finally, after functionalizing the alumina pore surfaces with an epoxysilane and then spotting it with β-Lactoglobulin protein, the interactions between the β-lactoglobulin and rabbit anti-β-lactoglobulin, as well as the interaction between the rabbit anti-β-lactoglobulin and a secondary antibody anti-rabbit Immunoglobulin G were monitored in real-time

    PERANCANGAN ALAT PENJEJAK MATAHARI PADA APLIKASI PEMBANGKIT LISTRIK TENAGA SURYA

    Get PDF
    Penggunaan panel sel surya sebagai sumber energi utama sudah banyak dikembangkan a ikasi industri maupun pada aplikasi rumah tangga. Namun penggunaan panel sel surya tersebut lebih banyak difokuskan sebagai sumber energi terbarukan dan ramah lingkungan. Penelitian-penelitian untuk mengkaji bagaimana mengefisiensikan penggunaan panel surya sebagai surnber energi utama belum banyak dilakukan. Penelitian ini mengkaji bagaimana mengefisiensikan penggunaan panel sel surya melalui rangkaian sistem alat yang disebut alat penjejak matahari. _Alat penjejak matahari yang akan dirancang menggunakan sensor LDR sebagai komponen deteksi arah pergerakan matahari yang dikendalikan secara otomatis oleh mikro konntroller AVR Atmega 2560. Hasil pengujian menunjukkan penggunaan rancangan alat penjajak matahari dapat meningkatkan rata-rata proseniase tegangan keluaran sel surya bisa mencapai 188% bila dibandingkan dengan kondisi sebelum panel sel surya menggunakan sistem alat penjajak matahar

    Novel blocked functionality copolymers as surface coatings in DNA microarray technology

    Get PDF
    AbstractNew copolymers made of 2-(dimethyl amino) ethyl methacrylate (DMAEM) and isocyanate ethyl methacrylate blocked with methyl ethyl ketoxime (IEMB) was synthesized in various composition ratios in order to obtain water reducible copolymers after acidification. They were characterized by infrared spectroscopy, chemical titration for the determination of amine equivalent weight, and by differential scanning calorimetry (DSC). Calorimetric analysis showed the presence of a former broad endothermal peak followed by a latter, stronger exothermal one, which can be respectively attributed to the deblocking of isocyanate groups and to their subsequent reactions. Some copolymer compositions were dip coated onto microscope glass slides and surfaces were characterized by static and dynamic contact angles, revealing a clear effect of the salifying agent and a likely surface rearrangement of polar groups while in contact with water. Finally, oligonucleotides surface immobilization and molecular recognition capability of the coated glass slides were positively assessed by hybridization tests with fluorescently labelled complementary probes

    Digital detection of exosomes by interferometric imaging

    Get PDF
    Exosomes, which are membranous nanovesicles, are actively released by cells and have been attributed to roles in cell-cell communication, cancer metastasis, and early disease diagnostics. The small size (30–100 nm) along with low refractive index contrast of exosomes makes direct characterization and phenotypical classification very difficult. In this work we present a method based on Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows multiplexed phenotyping and digital counting of various populations of individual exosomes (>50 nm) captured on a microarray-based solid phase chip. We demonstrate these characterization concepts using purified exosomes from a HEK 293 cell culture. As a demonstration of clinical utility, we characterize exosomes directly from human cerebrospinal fluid (hCSF). Our interferometric imaging method could capture, from a very small hCSF volume (20 uL), nanoparticles that have a size compatible with exosomes, using antibodies directed against tetraspanins. With this unprecedented capability, we foresee revolutionary implications in the clinical field with improvements in diagnosis and stratification of patients affected by different disorders.This work was supported by Regione Lombardia and Fondazione Cariplo through POR-FESR, project MINER (ID 46875467); Italian Ministry of Health, Ricerca Corrente. This work was partially supported by The Scientific and Technological Research Council of Turkey (grant #113E643). (Regione Lombardia; 46875467 - Fondazione Cariplo through POR-FESR, project MINER; Italian Ministry of Health, Ricerca Corrente; 113E643 - Scientific and Technological Research Council of Turkey)Published versio

    Dietary Habits and Risk of Early-Onset Dementia in an Italian Case-Control Study

    Get PDF
    Risk of early-onset dementia (EOD) might be modified by environmental factors and lifestyles, including diet. The aim of this study is to evaluate the association between dietary habits and EOD risk. We recruited 54 newly-diagnosed EOD patients in Modena (Northern Italy) and 54 caregivers as controls. We investigated dietary habits through a food frequency questionnaire, assessing both food intake and adherence to dietary patterns, namely the Greek-Mediterranean, the Dietary Approaches to Stop Hypertension (DASH), and the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. We modeled the relation between dietary factors and risk using the restricted cubic spline regression analysis. Cereal intake showed a U-shaped relation with EOD, with risk increasing above 350 g/day. A high intake (>400 g/day) of dairy products was also associated with excess risk. Although overall fish and seafood consumption showed no association with EOD risk, we found a U-shaped relation with preserved/tinned fish, and an inverse relation with other fish. Similarly, vegetables (especially leafy) showed a strong inverse association above 100 g/day, as did citrus and dry fruits. Overall, sweet consumption was not associated with EOD risk, while dry cake and ice-cream showed a positive relation and chocolate products an inverse one. For beverages, we found no relation with EOD risk apart from a U-shaped relation for coffee consumption. Concerning dietary patterns, EOD risk linearly decreased with the increasing adherence to the MIND pattern. On the other hand, an inverse association for the Greek-Mediterranean and DASH diets emerged only at very high adherence levels. To the best of our knowledge, this is the first study that explores the association between dietary factors and EOD risk, and suggests that adherence to the MIND dietary pattern may decrease such risk

    Surface chemistry and morphology in single particle optical imaging

    Get PDF
    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor’s target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.Accepted manuscrip

    Real time optical immunosensing with flow-through porous alumina membranes

    Get PDF
    Through the presentation of analytical data from bioassay experiments, measured by polarimetry, we demonstrate for the first time a real time immunoassay within a free standing macroporous alumina membrane. The 200 nm nominal pore diameter of the membrane enables flow-through, thereby providing an ideal fluidic platform for the targeted delivery of analytes to bioreceptors immobilized on the pore walls, enabling fast sensing response times and the use of small sample volumes (<100 μL). For the immunoassay, the pore walls were first coated with the functional copolymer, copoly(DMA-NAS) using a novel coupling process, before immobilization of the allergen protein, β-lactoglobulin, by spotting. The immuno-assay then proceeded with the binding of the primary and secondary antibody cognates, rabbit anti-β-lactoglobulin and anti-rabbit IgG respectively. Through the use of streptavidin coated quantum dots as refractive index signal enhancers, a noise floor for individual measurements of 3.7 ng/mL (25 pM) was obtained, with an overall statistical, or formal assay LOD of 33.7 ng/mL (225 pM), for total assay time below 1 h

    Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    Get PDF
    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation
    corecore