6 research outputs found

    Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals

    Get PDF
    Cell fractionation indicates that the compounds access the nucleus. The most potent compounds were exposed to HEK cells at a concentration of 1 ΟM for 24 h, after which the nucleus was separated from the cytoplasm. The concentration of these two blue compounds could be observed by the relative higher intensity in the nucleus compared to that in the cytoplasm. (PDF 3721 kb

    Phosphorothioate Oligonucleotides Reduce PrPSc Levels and Prion Infectivity in Cultured Cells

    No full text
    Prions are composed solely of the disease-causing prion protein (PrPSc) that is formed from the cellular isoform PrPC by a posttranslational process. Here we report that short phosphorothioate DNA (PS-DNA) oligonucleotides diminished the levels of both PrPC and PrPSc in prion-infected neuroblastoma (ScN2a) cells. The effect of PS-DNA on PrP levels was independent of the nucleotide sequence. The effective concentration (EC50) of PS-DNA required to achieve half-maximal diminution of PrPSc was ~70 nM, whereas the EC50 of PS-DNA for PrPC was more than 50-fold greater. This finding indicated that diminished levels of PrPSc after exposure to PS-DNA are unlikely to be due to decreased PrPC levels. Bioassays in transgenic mice demonstrated a substantial diminution in the prion infectivity after ScN2a cells were exposed to PS-DNAs. Whether PS-DNA will be useful in the treatment of prion disease in people or livestock remains to be established
    corecore