61 research outputs found
NKG2A Expression Is Not per se Detrimental for the Anti-Multiple Myeloma Activity of Activated Natural Killer Cells in an In Vitro System Mimicking the Tumor Microenvironment
Natural killer (NK) cell-based immunotherapy is a promising therapy for cancer patients. Inhibitory killer immunoglobulin-like receptors (KIRs) and NKG2A are required for NK cell licensing, but can also inhibit NK cell effector function. Upon reconstitution in a stem cell transplantation setting or after ex vivo NK expansion with IL-2, NKG2A is expressed on a large percentage of NK cells. Since the functional consequences of NKG2A co-expression for activated NK cells are not well known, we compared NKG2A+ vs NKG2A− NK cell subsets in response to K562 cells, multiple myeloma (MM) cell lines and primary MM cells. NK cells were isolated from healthy donors (HLA-C1+C2+Bw4+) and activated overnight with 1,000 U/ml IL-2. NK cell degranulation in subsets expressing KIRs and/or NKG2A was assessed at 21 or 0.6% O2. Activated NKG2A+ NK cell subsets degranulated more vigorously than NKG2A− subsets both at 21 and 0.6% O2. This was irrespective of the presence of KIR and occurred in response to HLA-deficient K562 cells as well as HLA competent, lowly expressing HLA-E MM cell lines. In response to primary MM cells, no inhibitory effects of NKG2A were observed, and NKG2A blockade did not enhance degranulation of NKG2A+ subsets. KIR− NK cells expressing NKG2A degranulated less than their NKG2A− counterparts in response to MM cells having high levels of peptide-induced membrane HLA-E, suggesting that high surface HLA-E levels are required for NKG2A to inhibit activated NK cells. Addition of daratumumab, an anti-CD38 to trigger antibody-dependent cell-mediated cytotoxicity, improved the anti-MM response for all subsets and degranulation of the KIR−NKG2A− “unlicensed” subset was comparable to KIR+ or NKG2A+ licensed subsets. This demonstrates that with potent activation, all subsets can contribute to tumor clearance. Additionally, subsets expressing KIRs mismatched with the HLA ligands on the target cell had the highest level of activation in response to MM cell lines as well as against primary MM. Our current study demonstrated that if NK cells are sufficiently activated, e.g., via cytokine or antibody activation, the (co-)expression of NKG2A receptor may not necessarily be a disadvantage for NK cell-based therapy
PIRCHE-II Is Related to Graft Failure after Kidney Transplantation
Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor–recipient couples that were transplanted between 1995 and 2005. For these donors–recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04–1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10–1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival
T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation
CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation
Eigenvalue asymptotics for weighted Laplace equations on rough Riemannian manifolds with boundary
Our topological setting is a smooth compact manifold of dimension two or
higher with smooth boundary. Although this underlying topological structure is
smooth, the Riemannian metric tensor is only assumed to be bounded and
measurable. This is known as a rough Riemannian manifold. For a large class of
boundary conditions we demonstrate a Weyl law for the asymptotics of the
eigenvalues of the Laplacian associated to a rough metric. Moreover, we obtain
eigenvalue asymptotics for weighted Laplace equations associated to a rough
metric. Of particular novelty is that the weight function is not assumed to be
of fixed sign, and thus the eigenvalues may be both positive and negative. Key
ingredients in the proofs were demonstrated by Birman and Solomjak nearly fifty
years ago in their seminal work on eigenvalue asymptotics. In addition to
determining the eigenvalue asymptotics in the rough Riemannian manifold setting
for weighted Laplace equations, we also wish to promote their achievements
which may have further applications to modern problems
Ellipro scores of donor epitope specific HLA antibodies are not associated with kidney graft survival
In kidney transplantation, donor HLA antibodies are a risk factor for graft loss. Accessibility of donor eplets for HLA antibodies is predicted by the ElliPro score. The clinical usefulness of those scores in relation to transplant outcome is unknown. In a large Dutch kidney transplant cohort, Ellipro scores of pretransplant donor antibodies that can be assigned to known eplets (donor epitope specific HLA antibodies [DESAs]) were compared between early graft failure and long surviving deceased donor transplants. We did not observe a significant Ellipro score difference between the two cohorts, nor significant differences in graft survival between transplants with DESAs having high versus low total Ellipro scores. We conclude that Ellipro scores cannot be used to identify DESAs associated with early versus late kidney graft loss in deceased donor transplants.</p
Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation
In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan–Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1–5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84–3.25) in deceased donation, and 2.22 (1.25–3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level.</p
Determination of the clinical relevance of donor epitope-specific HLA-antibodies in kidney transplantation
In kidney transplantation, survival rates are still partly impaired due to the deleterious effects of donor specific HLA antibodies (DSA). However, not all luminex-defined DSA appear to be clinically relevant. Further analysis of DSA recognizing polymorphic amino acid configurations, called eplets or functional epitopes, might improve the discrimination between clinically relevant vs. irrelevant HLA antibodies. To evaluate which donor epitope-specific HLA antibodies (DESAs) are clinically important in kidney graft survival, relevant and irrelevant DESAs were discerned in a Dutch cohort of 4690 patients using Kaplan-Meier analysis and tested in a cox proportional hazard (CPH) model including nonimmunological variables. Pre-transplant DESAs were detected in 439 patients (9.4%). The presence of certain clinically relevant DESAs was significantly associated with increased risk on graft loss in deceased donor transplantations (p < 0.0001). The antibodies recognized six epitopes of HLA Class I, 3 of HLA-DR, and 1 of HLA-DQ, and most antibodies were directed to HLA-B (47%). Fifty-three patients (69.7%) had DESA against one donor epitope (range 1-5). Long-term graft survival rate in patients with clinically relevant DESA was 32%, rendering DESA a superior parameter to classical DSA (60%). In the CPH model, the hazard ratio (95% CI) of clinically relevant DESAs was 2.45 (1.84-3.25) in deceased donation, and 2.22 (1.25-3.95) in living donation. In conclusion, the developed model shows the deleterious effect of clinically relevant DESAs on graft outcome which outperformed traditional DSA-based risk analysis on antigen level
Ellipro scores of donor epitope specific HLA antibodies are not associated with kidney graft survival
In kidney transplantation, donor HLA antibodies are a risk factor for graft loss. Accessibility of donor eplets for HLA antibodies is predicted by the ElliPro score. The clinical usefulness of those scores in relation to transplant outcome is unknown. In a large Dutch kidney transplant cohort, Ellipro scores of pretransplant donor antibodies that can be assigned to known eplets (donor epitope specific HLA antibodies [DESAs]) were compared between early graft failure and long surviving deceased donor transplants. We did not observe a significant Ellipro score difference between the two cohorts, nor significant differences in graft survival between transplants with DESAs having high versus low total Ellipro scores. We conclude that Ellipro scores cannot be used to identify DESAs associated with early versus late kidney graft loss in deceased donor transplants
- …