55 research outputs found

    Tectonic deformation et thermal structure of the North Ecuador - South Colombian Margin (0°-3.5°N) - implication for the seismogenesis

    No full text
    aaL’ensemble des forces impliquĂ©es dans la subduction contrĂŽle le transfert de mouvement du panneau plongeant vers la plaque chevauchante et par voie de consĂ©quence le rĂ©gime tectonique de la marge convergente. Ce rĂ©gime peut ĂȘtre caractĂ©risĂ©& par une accrĂ©tion frontale ou du sous-placage d’une part et une Ă©rosion frontale ou basale, d’autre part. Les processus de l’érosion de la base de la plaque chevauchante sont encore mal connus, et pourraient rĂ©sulter soit d’une abrasion mĂ©canique par les rugositĂ©s kilomĂ©triques Ă  centimĂ©triques de la plaque plongeante en rĂ©gime de fort couplage mĂ©canique soit d’une hydrofracturation basale rĂ©sultant des surpressions de fluides expulsĂ©s des sĂ©diments et de la croĂ»te subduits [von Huene and Culotta, 1989]. Cette derniĂšre hypothĂšse est envisageable en rĂ©gime de faible couplage mĂ©canique.Á l’échelle de la lithosphĂšre, la nuclĂ©ation des grands sĂ©ismes de subduction semble Ă©galement dĂ©pendre des forces impliquĂ©es dans les zones de subduction, puisque prĂšs de 90% de l’énergie sismique accumulĂ©e sur le globe est libĂ©rĂ©e dans ces zones de subduction. Ces grands sĂ©ismes se produisent par rupture d’une portion, au comportement fragile, du contact interplaque, appelĂ©e zone sismogĂšne, dont les limites semblent ĂȘtre principalement contrĂŽlĂ©es thermiquement. Ils peuvent se produire par rupture d’une zone fortement couplĂ©e et propagation de la rupture dans une zone de couplage moindre (modĂšle des aspĂ©ritĂ©s) [Kanamori, 1986; Lay and Kanamori, 1981; Lay et al., 1982] ou par la rupture d’une zone faiblement couplĂ©e et la propagation jusqu’à une zone de fort couplage (modĂšle des barriĂšres) [Aki, 1979; Das and Aki, 1977].L’étude de la marge Nord Équateur – Sud Colombie (0° - 3,5°N) a Ă©tĂ© abordĂ©e selon trois axes. (1) Les caractĂ©ristiques morpho-structurales du front de dĂ©formation, du bassin avant-arc et de son substratum nous renseignent sur le rĂ©gime tectonique dominant de la marge et ses variations spatio-temporelles. (2) Les caractĂ©ristiques des Bottom Simulating Reflectors permettent de calculer des valeurs du flux de chaleur, points de dĂ©part d’une modĂ©lisation thermique de la marge qui fournit une estimation des dimensions et de la localisation de la zone sismogĂšne et permet de discuter des variations longitudinales du rĂ©gime thermique de la marge. (3) Enfin, nous avons abordĂ© le rĂŽle des failles crustales hĂ©ritĂ©es de la marge, sur le contrĂŽle de la propagation de la rupture des grands sĂ©ismes de subduction du XX° siĂšcle.Cette marge apparaĂźt segmentĂ©e par des failles crustales transverses : les failles d’Esmeraldas et de Manglares, ainsi que par le promontoire d’Esmeraldas au Sud et le promontoire de Patia au Nord. Elle a globalement subi une dĂ©formation compressive, depuis le saut de subduction, Ă  l’ÉocĂšne moyen – supĂ©rieur, notamment lors de l’entrĂ©e en subduction de la jeune plaque Nazca, ce qui se traduit par une augmentation de la dĂ©formation. Cette dĂ©formation reste active au nord de la faille de Manglares alors qu’elle est scellĂ©e au sud. Le substratum et le front de la marge, d’Esmeraldas Ă  Buenaventura, semblent avoir subit une Ă©rosion tectonique apparemment initiĂ©e au MiocĂšne moyen – supĂ©rieur. Depuis environ 1 Ma, l’accrĂ©tion semble se propager du nord vers le sud.La zone sismogĂšne mesurerait 110 Ă  160 km de large et sa limite supĂ©rieure, serait situĂ©e Ă  ~11 km de profondeur et ~42 km de distance du front de dĂ©formation dans le nord de la zone d’étude. Le flux de chaleur, au front de la marge, varie du simple au double mettant en Ă©vidence une segmentation thermique de la marge.Enfin la localisation et l’extension des zones de rupture des sĂ©ismes montrent que les failles transverses hĂ©ritĂ©es d’Esmeraldas et de Manglares limitent la propagation de la rupture sismique et segmentent sismologiquement la marge

    RĂ©gimes tectoniques et thermiques de la marge Nord Equateur-Sud Colombie (0-3,5N) - (implications sur la sismogenĂšse)

    No full text
    PARIS-BIUSJ-ThĂšses (751052125) / SudocPARIS-BIUSJ-Sci.Terre recherche (751052114) / SudocSudocFranceF

    Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling

    No full text
    Wide-angle and multichannel seismic data collected on the Malpelo Ridge provide an image of the deep structure of the ridge and new insights on its emplacement and tectonic history. The crustal structure of the Malpelo Ridge shows a 14 km thick asymmetric crustal root with a smooth transition to the oceanic basin southeastward, whereas the transition is abrupt beneath its northwestern flank. Crustal thickening is mainly related to the thickening of the lower crust, which exhibits velocities from 6.5 to 7.4 km/s. The deep structure is consistent with emplacement at an active spreading axis under a hotspot like the present-day Galapagos Hotspot on the Cocos-Nazca Spreading Centre. Our results favour the hypothesis that the Malpelo Ridge was formerly a continuation of the Cocos Ridge, emplaced simultaneously with the Carnegie Ridge at the Cocos-Nazca Spreading Centre, from which it was separated and subsequently drifted southward relative to the Cocos Ridge due to differential motion along the dextral strike-slip Panama Fracture Zone. The steep faulted northern flank of the Malpelo Ridge and the counterpart steep and faulted southern flank of Regina Ridge are possibly related to a rifting phase that resulted in the Coiba Microplate's separation from the Nazca Plate along the Sandra Rift

    By Land or Sea: How Did Mammals Get to the Caribbean Islands?

    No full text
    International audienceA multidisciplinary team is jointly investigating mammal evolution and subduction dynamics to unravel how flightless land mammals migrated to the Greater Antilles and other Caribbean islands

    Three-dimensional velocity structure of the outer fore arc of the Colombia-Ecuador subduction zone and implications for the 1958 megathrust earthquake rupture zone

    No full text
    In 2005, an onshore, offshore 3-D refraction and wide-angle reflection seismic experiment was conducted along the convergent margin at the border between Colombia and Ecuador, over the rupture zone of the 1958, M-w 7.6 subduction earthquake. A well-defined Vp velocity model of the plate boundary and upper and lower plates was constructed, down to 25 km depth, using first arrival traveltimes inversion. The model reveals a several kilometers thick, low-velocity zone in the upper plate, located immediately above the interplate contact. This low-velocity zone might be related to alteration and fracturing of the mafic and ultramafic rocks, which composed the upper plate in this area by fluids released by the lower plate with possible contributions from sediment underplating. Near the toe of the margin, the model shows a low-velocity gradient in the outer wedge, which is interpreted as highly faulted and fractured rocks. This low-velocity/low-gradient region appears to limit the oceanward extension of the rupture zones of the 1958 and 1979 earthquakes, possibly because coseismic deformation and uplift of the outer margin wedge dissipates most of the seismic energy

    Does regional-scaled vigorous fluid fluxes reconcile thermal segmentation and interplate coupling variations at the Ecuadorian subduction zone?

    No full text
    International audienceIn subduction zones, questioning the causes for variations in interplate coupling and interplate slip behavior implies deciphering how much deep fluid content and flux influence thermo-mechanical features along the plate interface. A key-question in fluid-rich subduction zones is: how ventilated and insulated hydrothermal systems in basaltic aquifer influence interplate frictional properties and seismogenesis? This requires, in the first place, identifying zones of intense fluid flux at depth; challenging task!The oceanic aquifer is an uppermost basaltic layer, where interconnected porosity is many orders of magnitude greater than in overlying trench sediment, subduction channel (Spinelli et al., 2004) and underlying dike complex (Becker and Davis, 2004). This basaltic aquifer thus proved to be a very efficient pathway for fluids (Fisher and Becker, 2000) with thermal influence depending on the fluid exchange efficiency with surroundings. In ventilated aquifer, widespread fluid pathways favor heat advection from the ocean to the basement triggering hydrothermal cooling that results in unexpectedly low heat flow at the margin outer slope (Harris and Wang, 2002). In contrast, in insulated aquifer, less permeable sedimentary trench fill restrict heat advection and deep fluids flowing updip along the plate interface (Moreno et al., 2014) generate heat-flow higher than expected at the deformation front (Spinelli and Wang, 2008). Thus, dense heat-flow and seismic data may provide constraints on fluid flux at depth by deciphering the heat convection influence onto the margin thermal structure.In Ecuador, 104 Multichannel seismic lines show Bottom Simulating Reflectors (BSRs) along segments that all together extend over more than 2200 km. BSR-derived heat-flow (Yamano et al., 1982) provide an unprecedentedly detailed heat-flow map from south Ecuador to central Colombia. This map reveal the margin thermal segmentation. 50-70-km-large (along strike) margin segments show heat-flow values of 140-200 mW/mÂČ, thus 160-200% higher than expected at the margin front. In contrast 20-30-km-large margin segments show heat-flow values of 60-80 mW/mÂČ, 50-60% lower than expected. These “anomalously” high and low heat flow are typical of ventilated (Harris and Wang, 2002) and insulated (Spinelli and Wang, 2008) hydrothermal circulation respectively.These thermal variations provide evidences about major questions in subduction zones and in Ecuador in particular.1- The Ecuadorian subduction zone undergoes a fluid-rich hydrothermal circulation, which is the first example to be documented, worldwide, at such a regional scale.2- Insulated hydrothermal circulation fronts the rupture zones for the Pedernales (2016) and, possibly, for the 1942 earthquakes, while, to the south, the poorly coupling interplate zone corresponds with conductive heat-flow. Fluids flowing updip of the rupture zones along the interplate contact may thus favor interseismic coupling and co-seismic stick-slip behavior at greater depth.3- The subducting Atacames seamounts correspond with a poorly coupling interplate patch that shows unexpectedly low heat-flow at the deformation front. The subducting seamounts and the related deep pervasive margin fracturing are likely to provide efficient fluid pathways within the upper plate, interrupting the insulated circulation and favoring interplate decoupling.Becker, K., Davis, E.E., 2004. In situ determinations of the permeability of igneous ocean crust, in: Davies, E.E., Elderfield, H. (Eds.), Hydrogeology of the Ocean Lithosphere:. Cambridge University Press,, New York, pp. 189-224.Fisher, A.T., Becker, K., 2000. Channelized fluid flow in oceanic crust reconciles heat-flow and permeability data. Nature 403, 71-74. doi:10.1038/47463.Harris, R.N., Wang, K., 2002. Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica. Geophysical Research Letters 29, 21, 2010. doi:10.1029/2002GL015406.Moreno, M., Haberland, C., Oncken, O., Rietbrock, A., Angiboust, S., Heidbach, O., 2014. Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake. Nature Geoscience 7, 292-296. doi:10.1038/NGEO2102.Spinelli, G.A., Giambalvo, E.R., Fisher, A.T., 2004. Sediment permeability, distribution, and influence on fluxes in oceanic basement, in: Davies, E.E., Elderfield, H. (Eds.), Hydrogeology of the Oceanic Lithosphere. Cambridge University Press, New York, pp. 151–188.Spinelli, G.A., Wang, K., 2008. Effects of fluid circulation in subducting crust on Nankai margin seismogenic zone temperatures. Geology 36, 11, 887-890. doi:10.1130/G25145A.1.Yamano, M., Uyeda, S., Aoki, A.Y., Shipley, T.H., 1982. Estimates of heat flow derived from gas hydrates. Geology 10, 339-343

    Seamount subduction at the North-Ecuadorian convergent margin : effects on structures, inter-seismic coupling and seismogenesis

    No full text
    At the North-Ecuadorian convergent margin (1 degrees S-1.5 degrees N), the subduction of the rough Nazca oceanic plate leads to tectonic erosion of the upper plate and complex seismogenic behavior of the megathrust. We used three selected pre-stack depth migrated, multi-channel seismic reflection lines collected during the SISTEUR cruise to investigate the margin structure and decipher the impact of the subducted Atacames seamounts on tectonic erosion, interseismic coupling, and seismogenesis in the region of the 1942 Mw7.8 earthquake. This dataset highlights a subducted similar to 30 x 40 km, double-peak seamount that belongs to the Atacames seamount chain and that is associated with a deep morphologic re-entrant containing mass transport deposits. The seamount subduction uplifted the margin basement by similar to 1.6 km and pervasively broke the margin by deep and intense reverse faulting ahead of the seamount, a process that is likely to weaken considerably the margin. In the seamount wake, the basement reverse fault system rotated counter-clockwise. This faulted basement is overlain with slope sediment sliding along listric normal faults that sole out onto the BSR. This superposition of deep tectonic contraction within the basement and shallow gravitational extension deformation within the sediment highlights the key role of gas hydrate on outer slope erosion. In addition to long-term regional basal erosion, the margin basement has thinned locally by an extra 0.8-1 km in response to the subduction of the Atacames seamount chain and hydrofracturing by overpressured fluids at the margin toe. This pervasively and deeply fractured margin segment is associated with a seismically quiet and GPS-modeled low interseismic coupling corridor that terminates downdip near the 1942 epicenter and locked zone. We suggest that the deeply buried double-peak Atacames seamount triggered the 1942 earthquake ahead of its leading flank. This result supports previous studies proposing that subducted seamounts provide unfavorable conditions for locking the updip segment of the plate boundary limiting the updip extent of seismogenic zones, but may favor large subduction earthquakes at greater depths

    How wide is the seismogenic zone of the Lesser Antilles forearc?

    No full text
    The Lesser Antilles subduction zone has produced no recent strong thrust earthquakes, making it difficult to quantify the seismic hazard from such events. The Lesser Antilles arc has a low subduction rate and an accretionary wedge that is very wide at its southern end. To investigate the effect of the wedge on seismogenesis, numerical models of forearc thermal structure were constructed along six transects perpendicular to the arc in order to determine the thermally predicted width of the seismogenic zone. The geometry of each section is constrained by published seismic profiles and crustal models derived from gravity and seismic data and by earthquake hypocenters at depth. A major constraint on the deep part of the model is that mantle temperature beneath the volcanic arc should achieve a temperature of 1,100 degrees C to generate partial melts. Predicted surface heat flow is compared to the available heat flow observations. Thermal modeling results indicate a systematic southward increase in the width of the seismogenic zone, more than doubling in width from north to south and corresponding to a dramatic southward increase in forearc width (distance from the arc to the deformation front of the accretionary wedge). The minimum width of the seismogenic zone (distance between the intersections of the subduction interface with the 150 degrees C and 350 degrees C isotherms) increases from about 80 km, north of 16 degrees N, to 230 km, at 13 degrees N. The maximum width (between the 100 degrees C and 450 degrees C isotherms) ranges from about 150 km in the north to up to 320 km in the south. This large variation in the width of the seismogenic zone is a consequence of the increasing width of the accretionary wedge to the south, caused by the increased thickness of sediment on the subducting plate. There is good agreement between the thermally predicted seismogenic limits and the sparse distribution of recorded thrust earthquakes, which are observed only in the northern portion of the arc. Possible scenarios for mega-thrust earthquakes are discussed. Depending on the segment length (along-strike) of the rupture plane, the occurrence of an event of magnitude 8-9 cannot be excluded.L’absence de grands sĂ©ismes rĂ©cents Ă  mĂ©canismes chevauchants dans la zone de subduction des Petites Antilles rend difficile l’évaluation de l’alĂ©a sismique liĂ© Ă  de tels Ă©vĂ©nements. L’arc des Petites Antilles est caractĂ©risĂ© par une faible vitesse de subduction et par la prĂ©sence d’un prisme d’accrĂ©tion trĂšs dĂ©veloppĂ© Ă  son extrĂ©mitĂ© mĂ©ridionale. Afin d’évaluer les effets de la largeur de ce prisme sur la genĂšse des sĂ©ismes, nous avons Ă©tudiĂ© six sections perpendiculaires Ă  l’arc, du nord au sud de celui-ci, pour dĂ©terminer la largeur de la zone sismogĂšne prĂ©dite par les modĂšles thermiques appliquĂ©s Ă  chacune de ces coupes. La gĂ©omĂ©trie de ces derniĂšres est contrainte par les profils sismiques publiĂ©s, par les modĂšles de structure crustale dĂ©duits des donnĂ©es gravitaires et sismiques, et enfin par la distribution des hypocentres des sĂ©ismes. Un contrĂŽle important permettant de tester la validitĂ© des modĂšles thermiques en profondeur est qu’une tempĂ©rature minimale de 1 100oC, compatible avec la fusion partielle du manteau hydratĂ©, doit ĂȘtre atteinte sous l’arc volcanique actif. Par ailleurs, le flux thermique en surface prĂ©dit par ces modĂšles doit ĂȘtre compatible avec les mesures de flux de chaleur. Les modĂšles thermiques retenus d’aprĂšs ces critĂšres montrent une augmentation du simple au double vers le sud de la largeur de la zone sismogĂšne, qui correspond Ă  un Ă©largissement considĂ©rable de la taille du domaine avant-arc. En effet, la largeur minimale de la zone sismogĂšne (dĂ©finie comme la distance entre les intersections de l’interface des plaques avec les isothermes 150o et 350oC) augmente d’environ 80 km au nord de 16oN jusqu’à 230 km Ă  13oN. La largeur maximale de cette zone (dĂ©finie par les intersections de l’interface avec les isothermes 100o et 450oC) augmente, quant Ă  elle, d’environ 150 km au nord jusqu’à 320 km au sud de l’arc. Cette variation considĂ©rable est la consĂ©quence de l’augmentation de la largeur du prisme d’accrĂ©tion, elle-mĂȘme causĂ©e par l’accumulation croissante des sĂ©diments dĂ©posĂ©s sur la plaque plongeante. Les largeurs de la zone sismogĂšne prĂ©dites Ă  l’aide des modĂšles thermiques sont en bon accord avec les rares donnĂ©es disponibles sur les sĂ©ismes Ă  mĂ©canismes chevauchants dans la partie nord de l’arc. Les scĂ©narios possibles relatifs Ă  des mĂ©ga-sĂ©ismes de ce type n’excluent pas de futurs Ă©vĂ©nements atteignant des magnitudes de 8 Ă  9
    • 

    corecore