14 research outputs found

    Gaseous Air Pollutants and Hospitalization for Respiratory Disease in the Neonatal Period

    Get PDF
    OBJECTIVE: Current levels of ambient air pollution are associated with morbidity and mortality in the general population. To determine the influence of gaseous air pollutants on neonatal respiratory morbidity, we tested the association between daily respiratory hospitalizations and daily concentrations of ambient air pollution gases: ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide, in 11 large Canadian cities. STUDY DESIGN: Daily time-series analyses were employed and results were adjusted for day of the week, temperature, barometric pressure, and relative humidity. RESULTS: The percent increases in hospitalization associated with an increase in air pollution equivalent to its interquartile range were 3.35 [95% confidence interval (CI), 1.73–4.77] for O(3), 2.85 (95% CI, 1.68–4.02) for NO(2), 1.66 (95% CI, 0.63–2.69) for SO(2), and 1.75 (95% CI, 0.48–3.02) for CO. The independent effect of all pollutants combined was 9.61% (95% CI, 4.52–14.7%). CONCLUSION: Our results suggest that neonates are experiencing adverse effects of air pollution at current levels in Canada, and that accounts for a significant proportion of hospitalizations in this subgroup

    The Influence of Living Near Roadways on Spirometry and Exhaled Nitric Oxide in Elementary Schoolchildren

    Get PDF
    BACKGROUND: Living near major roadways has been associated with an increase in respiratory symptoms, but little is known about how this relates to airway inflammation. OBJECTIVE: We assessed the effects of living near local residential roadways based on objective indicators of ventilatory function and airway inflammation. METHODS: We estimated ambient air pollution, resolved to the level of the child's neighborhood, using a land-use regression model for children 9-11 years of age. We also summed the length of roadways found within a 200-m radius of each child's neighborhood. We had measurements of both air pollution exposure and spirometry for 2,328 children, and also had measurements of exhaled nitric oxide (eNO) for 1,613 of these children. RESULTS: Each kilometer of local roadway within a 200-m radius of the home was associated with a 6.8% increase in eNO (p = 0.045). Each kilometer of any type of roadway (local, major, highway) was also associated with an increase in eNO of 10.1% (p = 0.002). Each microgram per cubic meter increase in PM2.5 was associated with a 3.9% increase in eNO (p = 0.058) and 0.70% decrease in forced vital capacity (FVC) expressed as a percentage of predicted (p = 0.39). Associations between roadway density and both forced expired volume in 1 sec and FVC were negative but not statistically significant at p < 0.05. CONCLUSION: Traffic from local neighborhood roadways may cause airway inflammation as indicated by eNO. This may be a more sensitive indicator of adverse air pollution effects than traditional measures of ventilatory function

    A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008

    Get PDF
    AbstractNumerous studies have examined the association of air pollution with preterm birth and birth weight outcomes. Traffic-related air pollution has also increasingly been identified as an important contributor to adverse health effects of air pollution. We employed a national nitrogen dioxide (NO2) exposure model to examine the association between NO2 and pregnancy outcomes in Canada between 1999 and 2008. National models for NO2 (and particulate matter of median aerodynamic diameter <2.5µm (PM2.5) as a covariate) were developed using ground-based monitoring data, estimates from remote-sensing, land use variables and, for NO2, deterministic gradients relative to road traffic sources. Generalized estimating equations were used to examine associations with preterm birth, term low birth weight (LBW), small for gestational age (SGA) and term birth weight, adjusting for covariates including infant sex, gestational age, maternal age and marital status, parity, urban/rural place of residence, maternal place of birth, season, year of birth and neighbourhood socioeconomic status and per cent visible minority. Associations were reduced considerably after adjustment for individual covariates and neighbourhood per cent visible minority, but remained significant for SGA (odds ratio 1.04, 95%CI 1.02–1.06 per 20ppb NO2) and term birth weight (16.2g reduction, 95% CI 13.6–18.8g per 20ppb NO2). Associations with NO2 were of greater magnitude in a sensitivity analysis using monthly monitoring data, and among births to mothers born in Canada, and in neighbourhoods with higher incomes and a lower proportion of visible minorities. In two pollutant models, associations with NO2 were less sensitive to adjustment for PM2.5 than vice versa, and there was consistent evidence of a dose-response relationship for NO2 but not PM2.5. In this study of approximately 2.5 million Canadian births between 1999 and 2008, we found significant associations of NO2 with SGA and term birth weight which remained significant after adjustment for PM2.5, suggesting that traffic may be a particularly important source with respect to the role of air pollution as a risk factor for adverse pregnancy outcomes

    The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study

    Get PDF
    BACKGROUND: Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW). The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures. METHODS: The relationship between LBW and ambient levels of particulate matter up to 10 um in diameter (PM(10)), sulfur dioxide (SO(2)) and ground-level ozone (O(3)) was evaluated using the Nova Scotia Atlee Perinatal Database and ambient air monitoring data from the Environment Canada National Air Pollution Surveillance Network and the Nova Scotia Department of Environment. The cohort consisted of live singleton births (≥37 weeks of gestation) between January1,1988 and December31,2000. Maternal exposures to air pollution were assigned to women living within 25 km of a monitoring station at the time of birth. Air pollution was evaluated as a continuous and categorical variable (using quartile exposures) for each trimester and relative risks were estimated from logistic regression, adjusted for confounding variables. RESULTS: There were 74,284 women with a term, singleton birth during the study period and with exposure data. In the analyses unadjusted for year of birth, first trimester exposures in the highest quartile for SO(2 )and PM(10)suggested an increased risk of delivering a LBW infant (relative risk = 1.36, 95% confidence interval = 1.04 to 1.78 for SO(2 )exposure and relative risk = 1.33, 95% confidence interval = 1.02 to 1.74 for PM(10)). After adjustment for birth year, the relative risks were attenuated somewhat and not statistically significant. A dose-response relationship for SO(2 )was noted with increasing levels of exposure. No statistically significant effects were noted for ozone. CONCLUSION: Our results suggest that exposure during the first trimester to relatively low levels of some air pollutants may be associated with a reduction in birth weight in term-born infants. These findings have implications for the development of effective risk management strategies to minimize the public health impacts for pregnant women

    Air Health Trend Indicator: Association between Short-Term Exposure to Ground Ozone and Circulatory Hospitalizations in Canada for 17 Years, 1996–2012

    No full text
    The Air Health Trend Indicator is designed to estimate the public health risk related to short-term exposure to air pollution and to detect trends in the annual health risks. Daily ozone, circulatory hospitalizations and weather data for 24 cities (about 54% of Canadians) for 17 years (1996&ndash;2012) were used. This study examined three circulatory causes: ischemic heart disease (IHD, 40% of cases), other heart disease (OHD, 31%) and cerebrovascular disease (CEV, 14%). A Bayesian hierarchical model using a 7-year estimator was employed to find trends in the annual national associations by season, lag of effect, sex and age group (&le;65 vs. &gt;65). Warm season 1-day lagged ozone returned higher national risk per 10 ppb: 0.4% (95% credible interval, &minus;0.3&ndash;1.1%) for IHD, 0.4% (&minus;0.2&ndash;1.0%) for OHD, and 0.2% (&minus;0.8&ndash;1.2%) for CEV. Overall mixed trends in annual associations were observed for IHD and CEV, but a decreasing trend for OHD. While little age effect was identified, some sex-specific difference was detected, with males seemingly more vulnerable to ozone for CEV, although this finding needs further investigation. The study findings could reduce a knowledge gap by identifying trends in risk over time as well as sub-populations susceptible to ozone by age and sex

    The Oakville Oil Refinery Closure and Its Influence on Local Hospitalizations: A Natural Experiment on Sulfur Dioxide

    No full text
    Background: An oil refinery in Oakville, Canada, closed over 2004&ndash;2005, providing an opportunity for a natural experiment to examine the effects on oil refinery-related air pollution and residents&rsquo; health. Methods: Environmental and health data were collected for the 16 years around the refinery closure. Toronto (2.5 million persons) and the Greater Toronto Area (GTA, 6.3 million persons) were used as control and reference populations, respectively, for Oakville (160,000 persons). We compared sulfur dioxide and age- and season-standardized hospitalizations, considering potential factors such as changes in demographics, socio-economics, drug prescriptions, and environmental variables. Results: The closure of the refinery eliminated 6000 tons/year of SO2 emissions, with an observed reduction of 20% in wind direction-adjusted ambient concentrations in Oakville. After accounting for trends, a decrease in cold-season peak-centered respiratory hospitalizations was observed for Oakville (reduction of 2.2 cases/1000 persons per year, p = 0.0006 ) but not in Toronto (p = 0.856) and the GTA (p = 0.334). The reduction of respiratory hospitalizations in Oakville post closure appeared to have no observed link to known confounders or effect modifiers. Conclusion: The refinery closure allowed an assessment of the change in community health. This natural experiment provides evidence that a reduction in emissions was associated with improvements in population health. This study design addresses the impact of a removed source of air pollution

    Inequality in the Distribution of Air Pollution Attributable Mortality Within Canadian Cities

    No full text
    Abstract Recent studies have identified inequality in the distribution of air pollution attributable health impacts, but to our knowledge this has not been examined in Canadian cities. We evaluated the extent and sources of inequality in air pollution attributable mortality at the census tract (CT) level in seven of Canada's largest cities. We first regressed fine particulate matter (PM2.5) and nitrogen dioxide (NO2) attributable mortality against the neighborhood (CT) level prevalence of age 65 and older, low income, low educational attainment, and identification as an Indigenous (First Nations, Métis, Inuit) or Black person, accounting for spatial autocorrelation. We next examined the distribution of baseline mortality rates, PM2.5 and NO2 concentrations, and attributable mortality by neighborhood (CT) level prevalence of these characteristics, calculating the concentration index, Atkinson index, and Gini coefficient. Finally, we conducted a counterfactual analysis of the impact of reducing baseline mortality rates and air pollution concentrations on inequality in air pollution attributable mortality. Regression results indicated that CTs with a higher prevalence of low income and Indigenous identity had significantly higher air pollution attributable mortality. Concentration index, Atkinson index, and Gini coefficient values revealed different degrees of inequality among the cities. Counterfactual analysis indicated that inequality in air pollution attributable mortality tended to be driven more by baseline mortality inequalities than exposure inequalities. Reducing inequality in air pollution attributable mortality requires reducing disparities in both baseline mortality and air pollution exposure
    corecore