231 research outputs found

    HOW TO EVALUATE THE IMPACTS OF THE EXTENSION OF INNOVATIVE FARMING SYSTEMS AT THE REGIONAL SCALE? SCENARIO ANALYSIS OF ORGANIC AGRICULTURE IN THE CAMARGUE

    Get PDF
    N° ISBN - 978-2-7380-1284-5International audienceThe Camargue, South of France, is an agricultural region highly multifunctional and with strong issues linking the environment and the society. Evaluating scenarios of alternative agricultural systems extension in this region imply to use tools that allow Prospective, Integrated, Multiscale and Participatory Assessment of Agricultural Systems (PIMPAAS). In this paper, we reviewed the use of three approaches (BEM, ABM and LUCC) for PIMPAAS. After a presentation of the three approaches, we analyzed their advantages and drawbacks, and possible complementarities. As it is not possible to implement the three approaches together at one time, our aim was to make a choice for the Camargue. We found LUCC to be the least suitable approach, mainly because it does not allow participatory processes at farm scale. BEM and MAS appeared to be the most suitable tools as they allow quantitative and ex-ante studies and are able to incorporate the three sustainability domains. Their ways of up-scaling are complementary: BEM seems efficient for up-scaling from field to farm and field to region, whereas MAS allow up-scaling without aggregation from farm to region. We believe that the combination of the two approaches will enable highly participatory evaluations of alternative farming systems. Using the results of this analysis, we recommend using a combination of MAS and BEM in a global framework. We are currently implementing a framework in the Camargue to test this combination and to evaluate its suitability for prospective, multiscale, multicriteria and participatory evaluation

    Modeling effects of patchiness and biological variability on transport rates within bioturbated sediments

    Get PDF
    Bioturbation models are typically one-dimensional, with the underlying assumption that tracer gradients are predominantly vertical, and that sediment reworking is laterally homogeneous. These models implicitly assume that bioturbation activity does not vary with horizontal location on the sediment surface. Benthic organisms, however, are often patchily distributed. Moreover, due to natural variability, bioturbation activity varies among individuals within a population, and hence, among bioturbated patches. Here we analyze a 1D model formulation that explicitly includes patchiness, exemplified by conveyor-belt transport. The patchiness is represented with one coefficient αb, as the fraction of bioturbated areas of the total area. First, all the mixed patches are considered to feature the same bioturbation rates. Then variability of these rates among patches is introduced in the model. The model is analyzed through different scenarios to assess the influence of patchiness and biological variability on the resulting tracer profiles (luminophores, 234Th and 210Pb). With patchiness, the principal feature of the resulting profiles is exponential decrease of tracer concentrations near the SWI, due to the accumulation of particles in the nonbioturbated patches, and the presence of subsurface peaks or anomalous concentrations at depth, as the result of particle transport in the bioturbated patches. This pattern is unusual compared to published patterns for conveyor-belt transport. Adding intra-population variability in bioturbation rates induces biodiffusive-like transport, especially with luminophores. This theoretical work provides new insights about the influence of patch structure on particle dispersion within sediments and proposes a new applicable approach to model various bioturbation processes (type and rates of transport) that can be horizontally distributed in sediments

    Catalyst-free soft-template synthesis of ordered mesoporous carbon tailored using phloroglucinol/ glyoxylic acid environmentally friendly precursors

    Get PDF
    International audienceCarbon porous materials with a periodically ordered pore structure, controlled pore size and geometry and high thermal stability are synthesized using self-assembly of environmentally friendly phloroglucinol/ glyoxylic acid precursors with an amphiphilic triblock copolymer template. Glyoxylic acid, a plant-derived compound, is used for the first time as a substituent of carcinogen formaldehyde usually employed in such a synthesis. Thanks to the double functionality, i.e., aldehyde and carboxylic acid, glyoxylic acid plays not only the role of a cross-linker for the formation of the resin but also the role of a catalyst by creation of H-bonding or specific reactions between the precursors. Hence, no extra catalyst such as strong acids (HCl) or bases (NaOH) is any longer required. Carbon films and powders were successfully prepared with high surface areas (up to 800 m2 g−1), high porous volume (up to 1 cm3 g−1), tunable pore size (0.6 nm to 7 nm) and various pore architectures (hexagonal, cubic, and ink-bottle) by tuning the precursor ratio and by applying different manufacturing engineering strategies. Insights on the synthesis mechanism of the phenolic resin and carbon mesostructures were obtained using several analysis techniques, i.e., nuclear magnetic resonance (13C NMR) and FTIR spectroscopy, temperature programmed desorption coupled with mass spectrometry (TPD-MS) and thermo-gravimetric analysis (TGA)

    Inter-Comparison of the Spatial Distribution of Methane in the Water Column From Seafloor Emissions at Two Sites in the Western Black Sea Using a Multi-Technique Approach

    Get PDF
    Understanding the dynamics and fate of methane (CH 4 ) release from oceanic seepages on margins and shelves into the water column, and quantifying the budget of its total discharge at different spatial and temporal scales, currently represents a major scientific undertaking. Previous works on the fate of methane escaping from the seafloor underlined the challenge in both, estimating its concentration distribution and identifying gradients. In April 2019, the Envri Methane Cruise has been conducted onboard the R/V Mare Nigrum in the Western Black Sea to investigate two shallow methane seep sites at ∼120 m and ∼55 m water depth. Dissolved CH 4 measurements were conducted with two continuous in-situ sensors: a membrane inlet laser spectrometer (MILS) and a commercial methane sensor (METS) from Franatech GmbH. Additionally, discrete water samples were collected from CTD-Rosette deployment and standard laboratory methane analysis was performed by gas chromatography coupled with either purge-and-trap or headspace techniques. The resulting vertical profiles (from both in situ and discrete water sample measurements) of dissolved methane concentration follow an expected exponential dissolution function at both sites. At the deeper site, high dissolved methane concentrations are detected up to ∼45 m from the seabed, while at the sea surface dissolved methane was in equilibrium with the atmospheric concentration. At the shallower site, sea surface CH 4 concentrations were four times higher than the expected equilibrium value. Our results seem to support that methane may be transferred from the sea to the atmosphere, depending on local water depths. In accordance with previous studies, the shallower the water, the more likely is a sea-to-atmosphere transport of methane. High spatial resolution surface data also support this hypothesis. Well localized methane enriched waters were found near the surface at both sites, but their locations appear to be decoupled with the ones of the seafloor seepages. This highlights the need of better understanding the processes responsible for the transport and transformation of the dissolved methane in the water column, especially in stratified water masses like in the Black Sea

    Atmospheric GHG measurements onboard Voluntary Observing Ships - approaches for improved atmospheric sampling

    Get PDF
    Autonomous systems measuring the partial pressure of CO2 (pCO2) in surface waters on commercial carrier ships (Voluntary Observing Ship, VOS), which allows for high spatiotemporal data coverage, are a major component of the Ocean Thematic Centre (OTC) data stream. Currently, ICOS operates lines in the Atlantic, North Sea and the Baltic. All lines are determining pCO2 by measuring CO2 in air that has been equilibrated with seawater. As part of the European H2020 project RINGO (https://www.icos-ri.eu/ringo), we are evaluating the possibility of using VOS to expand the atmospheric network. We will provide technical solutions for three different settings and approaches, and assess the added value for the atmospheric observation network. Two systems are designed as stand-alone modules for continuous atmospheric CO2 and CH4 measurements, following the technological requirements defined by the ATC, and will be operated in the Baltic (high anthropogenic influence) and on a line between France and Brazil (clean marine air, large temperature and humidity gradient). A second approach is using the existing instrumentation for seawater measurements (North Atlantic), which we aim to improve in order to make these measurements usable for the atmospheric research community. This is an effort that connects the ocean research community with the Central Analytical Laboratories (CAL; testing an extended range of standard gases, providing flask sampling opportunity), the Atmospheric Thematic Centre (ATC; work on data streams that can be digested by the ATC system), and the modelling community (identifying useful sampling strategies). Here we present a status update of the ongoing work, which is a joined effort of the atmospheric and ocean community within ICOS and relying on the expertise of both fields

    Chapitre 10 - Co-conception de changements techniques et organisationnels au sein des systèmes agricoles

    Get PDF
    Résumé. Les mutations en cours au sein de l’agriculture interrogent les travaux et les méthodes relatifs à la conception de systèmes agricoles innovants. Ce chapitre analyse la spécificité de cinq démarches de co-conception de systèmes techniques testées en France et dans différents pays d’Afrique et d’Amérique latine. Elles se basent sur des interactions fortes entre les acteurs impliqués dans ces démarches, facilitées par une diversité d’objets intermédiaires tels que la modélisation ou l’expérimentation agronomique en milieu paysan. Elles ont permis de produire des connaissances opérationnelles et scientifiques sur des changements techniques et leurs conditions de mise en œuvre à l’échelle de l’exploitation ainsi que sur les conditions institutionnelles favorables à l’émergence de nouveaux systèmes. Ces démarches mobilisent des compétences ne relevant pas seulement de l’agronomie. L’intégration de chercheurs relevant des sciences humaines s’avère centrale, en particulier pour analyser comment hybrider des connaissances multiples en vue d’accompagner l’innovation au sein des exploitations et des territoires

    Simulating CH_4 and CO_2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA

    Get PDF
    The increasing availability of atmospheric measurements of greenhouse gases (GHGs) from surface stations can improve the retrieval of their fluxes at higher spatial and temporal resolutions by inversions, provided that transport models are able to properly represent the variability of concentrations observed at different stations. South and East Asia (SEA; the study area in this paper including the regions of South Asia and East Asia) is a region with large and very uncertain emissions of carbon dioxide (CO_2) and methane (CH_4), the most potent anthropogenic GHGs. Monitoring networks have expanded greatly during the past decade in this region, which should contribute to reducing uncertainties in estimates of regional GHG budgets. In this study, we simulate concentrations of CH_4 and CO_2 using zoomed versions (abbreviated as ZAs) of the global chemistry transport model LMDz-INCA, which have fine horizontal resolutions of  ∼ 0.66° in longitude and  ∼ 0.51° in latitude over SEA and coarser resolutions elsewhere. The concentrations of CH_4 and CO_2 simulated from ZAs are compared to those from the same model but with standard model grids of 2.50° in longitude and 1.27° in latitude (abbreviated as STs), both prescribed with the same natural and anthropogenic fluxes. Model performance is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against a unique observation dataset including 39 global and regional stations over SEA and around the world. Results show that ZAs improve the overall representation of CH_4 annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error at finer horizontal resolutions and thus better characterization of the CH_4 concentration gradients related to scattered distributed emission sources. However, the performance of ZAs at a specific station as compared to STs is more sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This highlights the importance of accurate a priori CH_4 surface fluxes in high-resolution transport modeling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Model performance for CO_2 suggests that the CO_2 surface fluxes have not been prescribed with sufficient accuracy and resolution, especially the spatiotemporally varying carbon exchange between land surface and atmosphere. In addition, the representation of the CH_4 and CO_2 short-term variabilities is also limited by model's ability to simulate boundary layer mixing and mesoscale transport in complex terrains, emphasizing the need to improve sub-grid physical parameterizations in addition to refinement of model resolutions

    Simulating CH_4 and CO_2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA

    Get PDF
    The increasing availability of atmospheric measurements of greenhouse gases (GHGs) from surface stations can improve the retrieval of their fluxes at higher spatial and temporal resolutions by inversions, provided that transport models are able to properly represent the variability of concentrations observed at different stations. South and East Asia (SEA; the study area in this paper including the regions of South Asia and East Asia) is a region with large and very uncertain emissions of carbon dioxide (CO_2) and methane (CH_4), the most potent anthropogenic GHGs. Monitoring networks have expanded greatly during the past decade in this region, which should contribute to reducing uncertainties in estimates of regional GHG budgets. In this study, we simulate concentrations of CH_4 and CO_2 using zoomed versions (abbreviated as ZAs) of the global chemistry transport model LMDz-INCA, which have fine horizontal resolutions of  ∼ 0.66° in longitude and  ∼ 0.51° in latitude over SEA and coarser resolutions elsewhere. The concentrations of CH_4 and CO_2 simulated from ZAs are compared to those from the same model but with standard model grids of 2.50° in longitude and 1.27° in latitude (abbreviated as STs), both prescribed with the same natural and anthropogenic fluxes. Model performance is evaluated for each model version at multi-annual, seasonal, synoptic and diurnal scales, against a unique observation dataset including 39 global and regional stations over SEA and around the world. Results show that ZAs improve the overall representation of CH_4 annual gradients between stations in SEA, with reduction of RMSE by 16–20% compared to STs. The model improvement mainly results from reduction in representation error at finer horizontal resolutions and thus better characterization of the CH_4 concentration gradients related to scattered distributed emission sources. However, the performance of ZAs at a specific station as compared to STs is more sensitive to errors in meteorological forcings and surface fluxes, especially when short-term variabilities or stations close to source regions are examined. This highlights the importance of accurate a priori CH_4 surface fluxes in high-resolution transport modeling and inverse studies, particularly regarding locations and magnitudes of emission hotspots. Model performance for CO_2 suggests that the CO_2 surface fluxes have not been prescribed with sufficient accuracy and resolution, especially the spatiotemporally varying carbon exchange between land surface and atmosphere. In addition, the representation of the CH_4 and CO_2 short-term variabilities is also limited by model's ability to simulate boundary layer mixing and mesoscale transport in complex terrains, emphasizing the need to improve sub-grid physical parameterizations in addition to refinement of model resolutions

    The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements

    Get PDF
    During the summer of 2018, a widespread drought developed over Northern and Central Europe. The increase in temperature and the reduction of soil moisture have influenced carbon dioxide (CO2) exchange between the atmosphere and terrestrial ecosystems in various ways, such as a reduction of photosynthesis, changes in ecosystem respiration, or allowing more frequent fires. In this study, we characterize the resulting perturbation of the atmospheric CO2 seasonal cycles. 2018 has a good coverage of European regions affected by drought, allowing the investigation of how ecosystem flux anomalies impacted spatial CO2 gradients between stations. This density of stations is unprecedented compared to previous drought events in 2003 and 2015, particularly thanks to the deployment of the Integrated Carbon Observation System (ICOS) network of atmospheric greenhouse gas monitoring stations in recent years. Seasonal CO2 cycles from 48 European stations were available for 2017 and 2018.The UK sites were funded by the UK Department of Business, Energy and Industrial Strategy (formerly the Department of Energy and Climate Change) through contracts TRN1028/06/2015 and TRN1537/06/2018. The stations at the ClimaDat Network in Spain have received funding from the ‘la Caixa’ Foundation, under agreement 2010-002624
    • …
    corecore