183 research outputs found
Cosmogenic Radionuclides In Ice Cores From West Antarctica
Cosmogenic nuclides such as 10Be and 26Al are formed in the atmosphere by cosmic rays and come down to the ground through snow which became ice in Antarctica. The concentrations of 10Be and 26Al in ice cores can reveal important information about climate change, solar activity and geomagnetic change in the past. They can also be used to date very old ice. Since there is very little 26Al in the ice, its actual concentration is poorly known and the measured results don’t agree with each other. My research is focused on the measurement of the concentration of 26Al as well as 10Be in an ice core from Antarctica. The ice samples undergo several chemical and physical processes to be ready for measurement. Some key process includes separating different ions using ion chromatography, oxidizing the samples at high temperature, and loading the final sample holders. Finally the samples are measured by accelerator mass spectrometry (AMS). After the AMS measurement, we calculated the average concentrations of 10Be for our sample to be 40,000 atoms g-1 and the concentration for 26Al is around 76 atoms g-1. The average ratio of 26Al/10Be is 2.40 * 10-3. This study will contribute to our knowledge of using 26Al/10Be to date very old ice. Combined with other similar studies at different ice core depths, we can also have a full picture of the change of concentration of cosmogenic nuclides through time
Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada
Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given
Terrestrial ages and exposure ages of Antarctic H-chondrites from Frontier Mountain, North Victoria Land
We measured the isotopic compositions and concentrations of He, Ne and Ar as well as the concentrations of cosmogenic ^Be, ^Al and ^Cl in 26 H-chondrites and 1 L-chondrite from a meteorite stranding area near the Frontier Mountain Range, East Antarctica. Based on the radionuclide concentrations and the noble gas signatures we conclude the 26 H-chondrite samples represent at least 13 different falls. The exposure ages of most H-chondrites are in the range of 4-10 million years (My). This age range encompasses the well-established exposure age peak at ∿7 My and an additional feature at ∿4 My. We determined the terrestrial ages on the basis of the ^Cl concentration as well as using the relation between the ^Cl/^Be ratio and the ^Be concentration. This relation also corrects for shielding effects and reduces the uncertainty in the age by ∿25% compared to simple ^Cl terrestrial ages. About 40% of the meteorites are older than 100 thousand years (ky), but none are older than 200ky. The relatively short terrestrial ages suggest that Frontier Mountain is a young meteorite stranding area. This seems to be supported by the bedrock exposure history, which shows a recent surface exposure≤70ky
The protocataclasite dilemma: in situ 36Cl and REE-Y lessons from an impure limestone fault scarp at Sparta, Greece
Reconstructions of palaeoseismicity are useful for understanding and mitigating seismic hazard risks. We apply cosmogenic 36Cl exposure-age dating and measurements of rare-earth elements and yttrium (REE-Y) concentrations to the palaeoseismic history of the Sparta Fault, Greece. Bayesian-inference Markov chain Monte Carlo (MCMC) modelling of 36Cl concentrations along a 7.2 m long vertical profile on the Sparta Fault scarp at Anogia indicate an increase in the average slip rate of the scarp from 0.8–0.9 mm yr−1 6.5–7.7 kyr ago to 1.1–1.2 mm yr−1 up to the devastating 464 BCE earthquake. The average exhumation of the entire scarp up to the present day is 0.7–0.8 mm yr−1. Modelling does not indicate additional exhumation of the Sparta Fault after 464 BCE. The Sparta Fault scarp is composed of fault breccia, containing quartz and clay-lined pores, in addition to host-rock-derived clasts of calcite and microcrystalline calcite cement. The impurities control the distribution of REE-Y in the fault scarp surface and contribute spatial variation to 36Cl concentrations, which precludes the identification of individual earthquakes that have exhumed the Sparta Fault scarp from either of these data sets. REE-Y may illustrate processes that localize slip to a discrete fault plane in the Earth's near-surface, but their potential use in palaeoseismicity would benefit from further evaluation.</p
Cosmogenic nuclides indicate that boulder fields are dynamic, ancient, multigenerational features
Boulder fields are found throughout the world; yet, the history of these features, as well as the processes that form them, remain poorly understood. In high and mid-latitudes, boulder fields are thought to form and be active during glacial periods; however, few quantitative data support this assertion. Here, we use in situ cosmogenic 10Be and 26Al to quantify the near-surface history of 52 samples in and around the largest boulder field in North America, Hickory Run, in central Pennsylvania, USA. Boulder surface 10Be concentrations (n = 43) increase downslope, indicate minimum near-surface histories of 70-600 k.y., and are not correlated with lithology or boulder size. Measurements of samples from the top and bottom of one boulder and three underlying clasts as well as 26Al/10Be ratios (n = 25) suggest that at least some boulders have complex exposure histories caused by flipping and/or cover by other rocks, soil, or ice. Cosmogenic nuclide data demonstrate that Hickory Run, and likely other boulder fields, are dynamic features that persist through multiple glacial-interglacial cycles because of boulder resistance to weathering and erosion. Long and complex boulder histories suggest that climatic interpretations based on the presence of these rocky landforms are likely over simplifications
Be-10 age constraints on latest Pleistocene and Holocene cirque glaciation across the western United States
Paleoclimate: A rocky reworking of Holocene glaciology New dating of glacially-deposited rocks substantially revises our understanding of the waxing and waning of ice since the last glacial maximum. Glaciologists have long thought that moraines throughout the western United States represent ‘neoglacial’ advances about 6,000 years ago. Now, a multi-institution team led by Shaun Marcott at the University of Wisconsin-Madison has found — using cosmogenic isotopes — that these terminal deposits left by advancing glaciers are instead 9,000 to 15,000 years old. The research advances prior work by using absolute, not relative ages, and documents that glaciers retreated after the last glacial maximum ~ 21,000 years ago, fluctuated locally throughout much of the Holocene, and re-advanced during the Little Ice Age of a few hundred years ago. Glacial advances that might have occurred during the neoglacial were wiped away by the more extensive glaciations of the Little Ice Age
Cosmogenic \u3csup\u3e26\u3c/sup\u3eAl/\u3csup\u3e10\u3c/sup\u3eBe surface production ratio in Greenland
The assumed value for the cosmogenic 26Al/10Be surface production rate ratio in quartz is an important parameter for studies investigating the burial or subaerial erosion of long-lived surfaces and sediments. Recent models and data suggest that the production ratio is spatially variable and may be greater than originally thought. Here we present measured 26Al/10Be ratios for 24 continuously exposed bedrock and boulder surfaces spanning ~61–77°N in Greenland. Empirical measurements, such as ours, include nuclides produced predominately by neutron-induced spallation with percent-level contributions by muon interactions. The slope of a York regression line fit to our data is 7.3 ± 0.3 (1σ), suggesting that the 26Al/10Be surface production ratio exceeds the commonly used value of 6.75, at least in the Arctic. A higher 26Al/10Be production ratio has implications for multinuclide cosmogenic isotope studies because it results in greater modeled burial durations and erosion rates
- …