346 research outputs found

    Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-Row Radial Aircraft Engine

    Get PDF
    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller, thus promoting a thorough mixing of fuel and charge air. Tests with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 15OO, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values. The maximum cylinder temperatures were reduced about 30 [degrees] F and the temperature distribution was improved by approximately the degree expected from the improvement in mixture distribution. Because the mixture distribution of the engine tested improves slightly at engine powers exceeding 1500 brake horsepower and because the effectiveness of the particular impeller diminished slightly at high rates of fuel flow, the improvement in mixture distribution at rated power and rich mixtures was less than that for other conditions. The difference between the fuel-air ratios of the richest and the leanest cylinders of the engine using the standard spray bar was so great that the fuel-air ratios of several cylinders were well below the chemically correct mixture, whereas other cylinders were operating at rich mixtures. Consequently, enrichment to improve engine cooling actually increascd some of the critical temperatures. The uniform mixture distribution providod by the injection impeller restored the normal response of cylinder temperatures to mixture enrichnent

    Turbulence-Augmented Minimization of Combustion Time in Mesoscale Internal Combustion Engines

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76256/1/AIAA-2006-1350-451.pd

    Helium reionization and the thermal proximity effect

    Full text link
    We examine the temperature structure of the intergalactic medium IGM) surounding a hard radiation source, such as a Quasi-Stellar Object (QSO), as it responds to the onset of helium reionization by the source. We model the reionization using a radiative transfer (RT) code coupled to a particle-mesh (PM) N-body code. Neutral hydrogen and helium are initially ionized by a starburst spectrum, which is allowed to gradually evolve into a power law spectrum (fnu ~ nu^(-0.5)). Multiple simulations were performed with different times for the onset and dominance of the hard spectrum, with onset redshifts ranging from z = 3.5 to 5.5. The source is placed in a high-density region to mimic the expected local environment of a QSO. Simulations with the source placed in a low-density environment were also performed as control cases to explore the role of the environment on the properties of the surrounding IGM. We find in both cases that the IGM temperature within the HeIII region produced exceeds the IGM temperature before full helium reionization, resulting in a "thermal proximity effect", but that the temperature in the HeIII region increases systematically with distance from the source. With time the temperature relaxes with a reduced spread as a function of impact parameter along neighbouring lines of sight, although the trend continues to persist until z = 2. Such a trend could be detected using the widths of intervening metal absorption systems using high resolution, high signal-to-noise ratio spectra.Comment: 17 pages, 12 figures, for publication in MNRA

    Low CO Luminosities in Dwarf Galaxies

    Get PDF
    [Abridged] We present maps of CO 2-1 emission covering the entire star-forming disks of 16 nearby dwarf galaxies observed by the IRAM HERACLES survey. The data have 13 arcsec angular resolution, ~250 pc at our average distance of 4 Mpc, and sample the galaxies by 10-1000 resolution elements. We apply stacking techniques to perform the first sensitive search for CO emission in dwarfs outside the Local Group ranging from single lines-of-sight, stacked over IR-bright regions of embedded star formation, and stacked over the entire galaxy. We detect 5 dwarfs in CO with total luminosities of L_CO = 3-28 1e6 Kkmspc2. The other 11 dwarfs remain undetected in CO even in the stacked data and have L_CO < 0.4-8 1e6 Kkmspc2. We combine our sample of dwarfs with a large literature sample of spirals to study scaling relations of L_CO with M_B and metallicity. We find that dwarfs with metallicities of Z ~ 1/2-1/10 Z_sun have L_CO about 1e2-1e4x smaller than spirals and that their L_CO per unit L_B is 10-100x smaller. A comparison with tracers of star formation (FUV and 24 micron) shows that L_CO per unit SFR is 10-100x smaller in dwarfs. One possible interpretation is that dwarfs form stars much more efficiently, however we argue that the low L_CO/SFR ratio is due to significant changes of the CO-to-H2 conversion factor, alpha_CO, in low metallicity environments. Assuming a constant H2 depletion time of 1.8 Gyr (as found for nearby spirals) implies alpha_CO values for dwarfs with Z ~ 1/2-1/10 Z_sun that are more than 10x higher than those found in solar metallicity spirals. This significant increase of alpha_CO at low metallicity is consistent with previous studies, in particular those which model dust emission to constrain H2 masses. Even though it is difficult to parameterize the metallicity dependence of alpha_CO, our results suggest that CO is increasingly difficult to detect at lower metallicities.Comment: Accepted for publication in the Astronomical Journal, 19 pages, 7 figure

    The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    Get PDF
    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.Comment: Accepted for publication in ApJ; Figures 1,8,9 provided as jpeg

    The Calibration of Monochromatic Far-Infrared Star Formation Rate Indicators

    Get PDF
    (Abridged) Spitzer data at 24, 70, and 160 micron and ground-based H-alpha images are analyzed for a sample of 189 nearby star-forming and starburst galaxies to investigate whether reliable star formation rate (SFR) indicators can be defined using the monochromatic infrared dust emission centered at 70 and 160 micron. We compare recently published recipes for SFR measures using combinations of the 24 micron and observed H-alpha luminosities with those using 24 micron luminosity alone. From these comparisons, we derive a reference SFR indicator for use in our analysis. Linear correlations between SFR and the 70 and 160 micron luminosity are found for L(70)>=1.4x10^{42} erg/s and L(160)>=2x10^{42} erg/s, corresponding to SFR>=0.1-0.3 M_sun/yr. Below those two luminosity limits, the relation between SFR and 70 micron (160 micron) luminosity is non-linear and SFR calibrations become problematic. The dispersion of the data around the mean trend increases for increasing wavelength, becoming about 25% (factor ~2) larger at 70 (160) micron than at 24 micron. The increasing dispersion is likely an effect of the increasing contribution to the infrared emission of dust heated by stellar populations not associated with the current star formation. The non-linear relation between SFR and the 70 and 160 micron emission at faint galaxy luminosities suggests that the increasing transparency of the interstellar medium, decreasing effective dust temperature, and decreasing filling factor of star forming regions across the galaxy become important factors for decreasing luminosity. The SFR calibrations are provided for galaxies with oxygen abundance 12+Log(O/H)>8.1. At lower metallicity the infrared luminosity no longer reliably traces the SFR because galaxies are less dusty and more transparent.Comment: 69 pages, 19 figures, 2 tables; accepted for publication on Ap

    An Aromatic Inventory of the Local Volume

    Get PDF
    Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (AFE, but also commonly referred to as PAH emission) for a statistically complete sample of star-forming galaxies in the local volume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the IRAC 8 micron flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer IRS spectra and equivalent photometry. A potential factor of two improvement could be realized with suitable 5.5 and 10 micron photometry, such as what may be provided in the future by JWST. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 micron complex to be 2.47E10 solar luminosities with a mean volume density of 8.8E6 solar luminosities per cubic Megaparsec. Twenty-four of the LVL galaxies, corresponding to a luminosity cut at M = -18.22 in the B band, account for 90% of the aromatic luminosity. Using oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies, we find a correlation between metallicity and the aromatic to total infrared emission ratio but not the aromatic to total 8 micron dust emission ratio. A possible explanation is that metallicity plays a role in the abundance of aromatic molecules relative to the total dust content, but other factors such as star formation and/or the local radiation field affect the excitation of those molecules.Comment: ApJ in press; 29 pages, 14 figures, 3 tables; emulateapj forma

    Seismic Monitoring of the Sun's Far Hemisphere: A Crucial Component in Future Space Weather Forecasting (A White Paper Submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) -- SSPH 2024-2033)

    Full text link
    The purpose of this white paper is to put together a coherent vision for the role of helioseismic monitoring of magnetic activity in the Sun's far hemisphere that will contribute to improving space weather forecasting as well as fundamental research in the coming decade. Our goal fits into the broader context of helioseismology in solar research for any number of endeavors when helioseismic monitors may be the sole synoptic view of the Sun's far hemisphere. It is intended to foster a growing understanding of solar activity, as realistically monitored in both hemispheres, and its relationship to all known aspects of the near-Earth and terrestrial environment. Some of the questions and goals that can be fruitfully pursued through seismic monitoring of farside solar activity in the coming decade include: What is the relationship between helioseismic signatures and their associated magnetic configurations, and how is this relationship connected to the solar EUV irradiance over the period of a solar rotation?; How can helioseismic monitoring contribute to data-driven global magnetic-field models for precise space weather forecasting?; What can helioseismic monitors tell us about prospects of a flare, CME or high-speed stream that impacts the terrestrial environment over the period of a solar rotation?; How does the inclusion of farside information contribute to forecasts of interplanetary space weather and the environments to be encountered by human crews in interplanetary space? Thus, it is crucial for the development of farside monitoring of the Sun be continued into the next decade either through ground-based or space-borne observations

    Early results from the SAGE-SMC Spitzer legacy

    Get PDF
    Early results from the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the tidally-disrupted, low-metallicity Small Magellanic Cloud) Spitzer legacy program are presented. These early results concentrate on the SAGE-SMC MIPS observations of the SMC Tail region. This region is the high H i column density portion of the Magellanic Bridge adjacent to the SMC Wing. We detect infrared dust emission and measure the gas-to-dust ratio in the SMC Tail and find it similar to that of the SMC Body. In addition, we find two embedded cluster regions that are resolved into multiple sources at all MIPS wavelengths. © 2009 International Astronomical Union
    • …
    corecore