39 research outputs found

    Aerosol Jet Printed Organic Memristive Microdevices Based on a Chitosan:PANI Composite Conductive Channel

    Get PDF
    In this study we show a chitosan:polyaniline (CPA)-based ink, responding to eco-biofriendly criteria, specifically developed for the manufacturing of the first organic memristive device (OMD) with an aerosol jet printed conductive channel. Our contribution is in the context of bioelectronics, where there is an increasing interest in emulating neuro-morphic functions. In this framework, memristive devices and systems have been shown to be well suited. In particular organic-based devices are envisaged as very promising in some applications, such as brain-machine interfacing, owing to specific properties of organics (e.g., biocompatibility, mixed ionic-electronic conduction). On the other hand, the research activities on flexible organic (bio)electronic devices and direct writing (DW) noncontact techniques increasingly overlap in the effort of achieving reliable applications benefiting from the rapid prototyping to accomplish a fast device optimization. In this context, ink-based techniques, such as aerosol jet printing (AJP), although particularly well suited to implement 3D-printed electronics due to advantages it offers in terms of a wide set of allowed printable materials, still require research efforts aimed at conferring printability to the desired precursors. The developed CPA composite was characterized by FTIR, DLS, and MALDI-TOF techniques, while the related aerosol jet printed films were studied by SEM and profilometry. Taking advantage of the intrinsic and stable electrical conductivity of CPA films, which do not necessarily require any acidic treatment to promote a sustained charge carrier conduction, 10 mu m short-channel OMDs were hence manufactured by interfacing the printed CPA layers with a solid polyelectrolyte (SPE). We accordingly demonstrated prototypes of stable and best performing OMD devices with downscaled features, showing well-defined counterclockwise hysteresis/rectification and an enhanced durability. These properties pave the way to further improving performance, as well as to realizing a direct integration of the devices into hardware neural networks by in-line fabrication routes

    Interfacing aptamers, nanoparticles and graphene in a hierarchical structure for highly selective detection of biomolecules in OECT devices

    Get PDF
    In several biomedical applications, the detection of biomarkers demands high sensitivity, selectivity and easy-to-use devices. Organic electrochemical transistors (OECTs) represent a promising class of devices combining a minimal invasiveness and good signal transduction. However, OECTs lack of intrinsic selectivity that should be implemented by specific approaches to make them well suitable for biomedical applications. Here, we report on a biosensor in which selectivity and a high sensitivity are achieved by interfacing, in an OECT architecture, a novel gate electrode based on aptamers, Au nanoparticles and graphene hierarchically organized to optimize the final response. The fabricated biosensor performs state of the art limit of detection monitoring biomolecules, such as thrombin-with a limit of detection in the picomolar range (≤ 5 pM) and a very good selectivity even in presence of supraphysiological concentrations of Bovine Serum Albumin (BSA-1mM). These accomplishments are the final result of the gate hierarchic structure that reduces sterich indrance that could contrast the recognition events and minimizes false positive, because of the low affinity of graphene towards the physiological environment. Since our approach can be easily applied to a large variety of different biomarkers, we envisage a relevant potential for a large series of different biomedical applications

    Organic Bioelectronics Development in Italy: A Review

    Get PDF
    In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions

    Mechanical characterization of 3C-SiC grown on Si micromachined cantilever

    Get PDF
    Resonating microcantilever (MCs) are extremely sensitive mass detectors that have been successfully proposed as chemical, biological and environmental sensors [1]. However, recent works have demonstrated that variation of flexural rigidity due to localization of molecule absorption can induce a positive frequency shift larger than the negative one due to the added mass effect [2]. Goal of our research is to grown and pattern thin 3C-SiC films on Si MC to obtain a huge local increment of beam stiffness, exploiting the outstanding mechanical properties of such material (in particular, its large Young modulus)

    How underground systems can contribute to meet the challenges of energy transition

    Get PDF
    The paper provides an overview of the several scientific and technical issues and challenges to be addressed for underground storage of carbon dioxide, hydrogen and mixtures of hydrogen and natural gas. The experience gained on underground energy systems and materials is complemented by new competences to adequately respond to the new needs raised by transition from fossil fuels to renewables. The experimental characterization and modeling of geological formations (including geochemical and microbiological issues), fluids and fluid-flow behavior and mutual interactions of all the systems components at the thermodynamic conditions typical of underground systems as well as the assessment and monitoring of safety conditions of surface facilities and infrastructures require a deeply integrated teamwork and fit-for-purpose laboratories to support theoretical research. The group dealing with large-scale underground energy storage systems of Politecnico di Torino has joined forces with the researchers of the Center for Sustainable Future Technologies of the Italian Institute of Technology, also based in Torino, to meet these new challenges of the energy transition era, and evidence of the ongoing investigations is provided in this paper

    COPD management as a model for all chronic respiratory conditions : report of the 4th Consensus Conference in Respiratory Medicine

    Get PDF
    Background: Non-communicable diseases (NCDs) kill 40 million people each year. The management of chronic respiratory NCDs such as chronic obstructive pulmonary disease (COPD) is particularly critical in Italy, where they are widespread and represent a heavy burden on healthcare resources. It is thus important to redefine the role and responsibility of respiratory specialists and their scientific societies, together with that of the whole healthcare system, in order to create a sustainable management of COPD, which could become a model for other chronic respiratory conditions. Methods: These issues were divided into four main topics (Training, Organization, Responsibilities, and Sustainability) and discussed at a Consensus Conference promoted by the Research Center of the Italian Respiratory Society held in Rome, Italy, 3-4 November 2016. Results and conclusions: Regarding training, important inadequacies emerged regarding specialist training - both the duration of practical training courses and teaching about chronic diseases like COPD. A better integration between university and teaching hospitals would improve the quality of specialization. A better organizational integration between hospital and specialists/general practitioners (GPs) in the local community is essential to improve the diagnostic and therapeutic pathways for chronic respiratory patients. Improving the care pathways is the joint responsibility of respiratory specialists, GPs, patients and their caregivers, and the healthcare system. The sustainability of the entire system depends on a better organization of the diagnostic-therapeutic pathways, in which also other stakeholders such as pharmacists and pharmaceutical companies can play an important role

    Effects of noise sourcing on organic memristive devices

    No full text
    The effects of noise on any electronic system is a crucial aspect for the delineation of the proper functioning of circuits. Different and consolidated models have been proposed for classical electronic circuital elements but the effect of noise sourcing on memristive devices still lacks a wide and rich experimental description. Despite the larger use of Gaussian white noise in the stimulation of memristive systems, the use of uniform white noise has been recently proposed as a possible method for underlining variations in the impedance of an electronic device and in dynamic monitoring the system evolution. By applying uniform white noise to organic memristive devices (OMDs) while measuring the resulting current noise, we dynamically monitored the effects of noise amplitude on memristive properties. In fact OMDs functioning is based on the interfacial redox activity between polyaniline and a liquid electrolyte and constitutes an intrinsically impedance variation of the channel. We show that noise sourcing affects the hysteresis loops, the typical characteristics of electronic systems endowed with memory
    corecore