258 research outputs found
J Acquir Immune Defic Syndr
We describe HIV-1 evolutionary dynamics in the 4 participants from the TDF2-PrEP trial who became HIV-1 infected while prescribed emtricitabine and tenofovir disoproxil fumarate (FTC/TDF). At seroconversion, virus diversity in the 2 participants with detectable drug was only 0.05% (95% confidence intervals: 0.04 to 0.06) and 0.07% (0.06 to 0.08) compared with 2.25% (1.95 to 2.6) and 0.42% (0.36 to 0.49) in those with no detectable drug and 0.07%-0.69% in 5 placebo recipients (P > 0.5). At 10 months, diversity in adherent participants was only 0.37% (0.31 to 0.41) and 0.86% (0.82 to 0.90) compared with 0.5%-1.7% among participants who did not take FTC/TDF (P > 0.5). Although limited by the small number of infections that reduced the power to detect differences, we found that sequences from seroconverters with detectable drug were more homogeneous than those from placebo or nonadherent seroconverters.26689970PMC487657
Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature
The alpha-beta magneto-structural phase transition in MnAs/GaAs(111)
epilayers is investigated by elastic neutron scattering. The in-plane parameter
of MnAs remains almost constant with temperature from 100 K to 420 K, following
the thermal evolution of the GaAs substrate. This induces a temperature
dependent biaxial strain that is responsible for an alpha-beta phase
coexistence and, more important, for the stabilization of the ferromagnetic
alpha-phase at higher temperature than in bulk. We explain the premature
appearance of the beta-phase at 275 K and the persistence of the ferromagnetic
alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase
diagram. It results that the biaxial strain in the hexagonal plane is the key
parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature
The alpha-beta magneto-structural phase transition in MnAs/GaAs(111)
epilayers is investigated by elastic neutron scattering. The in-plane parameter
of MnAs remains almost constant with temperature from 100 K to 420 K, following
the thermal evolution of the GaAs substrate. This induces a temperature
dependent biaxial strain that is responsible for an alpha-beta phase
coexistence and, more important, for the stabilization of the ferromagnetic
alpha-phase at higher temperature than in bulk. We explain the premature
appearance of the beta-phase at 275 K and the persistence of the ferromagnetic
alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase
diagram. It results that the biaxial strain in the hexagonal plane is the key
parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review
Letter
Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia
Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients
Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)
We have probed the interface of a ferromagnetic/semiconductor (FM/SC)
heterojunction by a combined high resolution photoemission spectroscopy and
x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example
of a very low reactivity interface system and it expected to constitute large
Tunnel Magnetoresistance devices. We focus on the interface atomic environment,
on the microscopic processes of the interface formation and on the iron
valence-band. We show that the Fe contact with ZnSe induces a chemical
conversion of the ZnSe outermost atomic layers. The main driving force that
induces this rearrangement is the requirement for a stable Fe-Se bonding at the
interface and a Se monolayer that floats at the Fe growth front. The released
Zn atoms are incorporated in substitution in the Fe lattice position. This
formation process is independent of the ZnSe surface termination (Zn or Se).
The Fe valence-band evolution indicates that the d-states at the Fermi level
show up even at submonolayer Fe coverage but that the Fe bulk character is only
recovered above 10 monolayers. Indeed, the Fe 1-band states,
theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe
junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review
Conversational Therapy through Semi-Immersive Virtual Reality Environments for Language Recovery and Psychological Well-Being in Post Stroke Aphasia
Aphasia is a highly disabling acquired language disorder generally caused by a left-lateralized brain damage. Even if traditional therapies have been shown to induce an adequate clinical improvement, a large percentage of patients are left with some degree of language impairments. Therefore, new approaches to common speech therapies are urgently needed in order to maximize the recovery from aphasia. The recent application of virtual reality (VR) to aphasia rehabilitation has already evidenced its usefulness in promoting a more pragmatically oriented treatment than conventional therapies (CT). In the present study, thirty-six chronic persons with aphasia (PWA) were randomly assigned to two groups. The VR group underwent conversational therapy during VR everyday life setting observation, while the control group was trained in a conventional setting without VR support. All patients were extensively tested through a neuropsychological battery which included not only measures for language skills and communication efficacy but also self-esteem and quality of life questionnairies. All patients were trained through a conversational approach by a speech therapist twice a week for six months (total 48 sessions). After the treatment, no significant differences among groups were found in the different measures. However, the amount of improvement in the different areas was distributed over far more cognitive and psychological aspects in the VR group than in the control group. Indeed, the within-group comparisons showed a significant enhancement in different language tasks (i.e., oral comprehension, repetition, and written language) only in the VR group. Significant gains, after the treatment, were also found, in the VR group, in different psychological dimensions (i.e., self-esteem and emotional and mood state). Given the importance of these aspects for aphasia recovery, we believe that our results add to previous evidence which points to the ecological validity and feasibility of VR treatment for language recovery and psychosocial well-being
Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures
We report on resonant tunneling magnetoresistance via localized states
through a ZnSe semiconducting barrier which can reverse the sign of the
effective spin polarization of tunneling electrons. Experiments performed on
Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its
sign-reversible magnetoresistance can be obtained, depending on the bias
voltage, the energy of localized states in the ZnSe barrier and spatial
symmetry. The averaging of conduction over all localized states in a junction
under resonant condition is strongly detrimental to the magnetoresistance
Transcranial Cerebellar Direct Current Stimulation (tDCS) Enhances Verb Generation but Not Verb Naming in Poststroke Aphasia
Although the role of the cerebellum in motor function is well recognized, its involvement in the lexical domain remains to be further elucidated. Indeed, it has not yet been clarified if the cerebellum is a language structure per se or if it contributes to language processing when other cognitive components (e.g., cognitive effort, working memory) are required by the language task. Neuromodulation studies on healthy participants have suggested that cerebellar transcranial direct current stimulation (tDCS) is a valuable tool to modulate cognitive functions. However, so far, only a single case study has investigated whether cerebellar stimulation enhances language recovery in aphasic individuals. In a randomized, crossover, double-blind design, we explored the effect of cerebellar tDCS coupled with language treatment for verb improvement in 12 aphasic individuals. Each participant received cerebellar tDCS (20 min, 2 mA) in four experimental conditions: (1) right cathodal and (2) sham stimulation during a verb generation task and (3) right cathodal and (4) sham stimulation during a verb naming task. Each experimental condition was run in five consecutive daily sessions over 4 weeks. At the end of treatment, a significant improvement was found after cathodal stimulation only in the verb generation task. No significant differences were present for verb naming among the two conditions. We hypothesize that cerebellar tDCS is a viable tool for recovery from aphasia but only when the language task, such as verb generation, also demands the activation of nonlinguistic strategies
Incomplete evidence that increasing current intensity of tDCS boosts outcomes
BACKGROUND: Transcranial direct current stimulation (tDCS) is investigated to modulate neuronal function by applying a fixed low-intensity direct current to scalp. OBJECTIVES: We critically discuss evidence for a monotonic response in effect size with increasing current intensity, with a specific focus on a question if increasing applied current enhance the efficacy of tDCS. METHODS: We analyzed tDCS intensity does-response from different perspectives including biophysical modeling, animal modeling, human neurophysiology, neuroimaging and behavioral/clinical measures. Further, we discuss approaches to design dose-response trials. RESULTS: Physical models predict electric field in the brain increases with applied tDCS intensity. Data from animal studies are lacking since a range of relevant low-intensities is rarely tested. Results from imaging studies are ambiguous while human neurophysiology, including using transcranial magnetic stimulation (TMS) as a probe, suggests a complex state-dependent non-monotonic dose response. The diffusivity of brain current flow produced by conventional tDCS montages complicates this analysis, with relatively few studies on focal High Definition (HD)-tDCS. In behavioral and clinical trials, only a limited range of intensities (1-2 mA), and typically just one intensity, are conventionally tested; moreover, outcomes are subject brain-state dependent. Measurements and models of current flow show that for the same applied current, substantial differences in brain current occur across individuals. Trials are thus subject to inter-individual differences that complicate consideration of population-level dose response. CONCLUSION: The presence or absence of simple dose response does not impact how efficacious a given tDCS dose is for a given indication. Understanding dose-response in human applications of tDCS is needed for protocol optimization including individualized dose to reduce outcome variability, which requires intelligent design of dose-response studies
- …