147 research outputs found

    Implications of COVID-19 control measures for diet and physical activity, and lessons for addressing other pandemics facing rapidly urbanising countries.

    Get PDF
    At the time of writing, it is unclear how the COVID-19 pandemic will play out in rapidly urbanising regions of the world. In these regions, the realities of large overcrowded informal settlements, a high burden of infectious and non-communicable diseases, as well as malnutrition and precarity of livelihoods, have raised added concerns about the potential impact of the COVID-19 pandemic in these contexts. COVID-19 infection control measures have been shown to have some effects in slowing down the progress of the pandemic, effectively buying time to prepare the healthcare system. However, there has been less of a focus on the indirect impacts of these measures on health behaviours and the consequent health risks, particularly in the most vulnerable. In this current debate piece, focusing on two of the four risk factors that contribute to >80% of the NCD burden, we consider the possible ways that the restrictions put in place to control the pandemic, have the potential to impact on dietary and physical activity behaviours and their determinants. By considering mitigation responses implemented by governments in several LMIC cities, we identify key lessons that highlight the potential of economic, political, food and built environment sectors, mobilised during the pandemic, to retain health as a priority beyond the context of pandemic response. Such whole-of society approaches are feasible and necessary to support equitable healthy eating and active living required to address other epidemics and to lower the baseline need for healthcare in the long term

    Urban public space initiatives and health in Africa: A mixed-methods systematic review

    Get PDF
    Public space initiatives (PSIs) in African cities can significantly promote health and social well-being, yet their implementation and impact are unknown across the continent. There is a substantial gap in literature on PSIs in African countries, with most studies concentrated in wealthier cities and lacking comprehensive assessments of long-term health impacts. The objective of this study was to synthesise evidence on the typology, location, features, and outcomes of these initiatives as well as the guiding principles that underlie their design and implementation. Employing a mixed-methods model, the study systematically reviews peer-reviewed and grey literature articles, focusing on the types, settings, and outcomes of PSIs. Data is analyzed using the CASP appraisal tool and thematic analysis. We analysed 47 studies, 15 of which were mixed methods, 22 qualitative and 10 quantitative. Sports accounted for 50% of initiatives. 30 of the 47 papers originated from South Africa. Communities viewed initiatives’ wellbeing impacts through social, economic, and ecological lenses, with health being but one dimension. The sustainability of initiatives was often limited by funding, historical marginalization, and competing land uses. Findings underscore the need for more comprehensive, long-term evaluations and cross-sector collaborations to sustain and enhance health-promoting public spaces in African cities

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Biophysical interactions in tropical agroforestry systems

    Full text link
    sequential systems, simultaneous systems Abstract. The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interac-tions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offse

    EMBO Rep.

    No full text

    Human ribosomal protein L18a interacts with hepatitis C virus internal ribosome entry site

    No full text
    Translation initiation of hepatitis C virus RNA occurs via ribosome binding to an ‘internal ribosome entry site (IRES)’ located in the 5′untranslated region of the viral RNA. The principle interaction between the 40S ribosomal subunit and the HCV IRES has been shown to be largely factor independent, which is followed by the joining of the 60S ribosomal subunit to form functional 80S complex. However several additional cellular proteins have been reported to bind to HCV IRES and enhance the initiation of translation. In order to identify novel factors involved in the ribosome assembly during internal initiation of HCV RNA, northwestern screening of a HeLa cDNA expression library was performed, using HCV IRES RNA as probe. We demonstrate here, that human ribosomal protein L18a, a constituent of 60S subunit, interacts with HCV IRES RNA. This interaction was further confirmed by using a recombinant protein similar to L18a (sL18a), cloned from human blood. Interestingly, addition of increasing concentration of the purified recombinant sL18a protein, showed moderate stimulation of HCV IRES activity in the in vitro translation assay. These observations suggest that the human L18a might influence the HCV IRES mediated translation

    Human ribosomal protein L18a interacts with hepatitis C virus internal ribosome entry site

    No full text
    Translation initiation of hepatitis C virus RNA occurs via ribosome binding to an 'internal ribosome entry site (IRES)' located in the 5'untranslated region of the viral RNA. The principle interaction between the 40S ribosomal subunit and the HCV IRES has been shown to be largely factor independent, which is followed by the joining of the 60S ribosomal subunit to form functional 80S complex. However several additional cellular proteins have been reported to bind to HCV IRES and enhance the initiation of translation. In order to identify novel factors involved in the ribosome assembly during internal initiation of HCV RNA, northwestern screening of a HeLa cDNA expression library was performed, using HCV IRES RNA as probe. We demonstrate here, that human ribosomal protein L18a, a constituent of 60S subunit, interacts with HCV IRES RNA. This interaction was further confirmed by using a recombinant protein similar to L18a (sL18a), cloned from human blood. Interestingly, addition of increasing concentration of the purified recombinant sL18a protein, showed moderate stimulation of HCV IRES activity in the in vitro translation assay. These observations suggest that the human L18a might influence the HCV IRES mediated translation

    Human ribosomal protein L18a interacts with hepatitis C virus internal ribosome entry site

    No full text
    Translation initiation of hepatitis C virus RNA occurs via ribosome binding to an ‘internal ribosome entry site (IRES)’ located in the 5′untranslated region of the viral RNA. The principle interaction between the 40S ribosomal subunit and the HCV IRES has been shown to be largely factor independent, which is followed by the joining of the 60S ribosomal subunit to form functional 80S complex. However several additional cellular proteins have been reported to bind to HCV IRES and enhance the initiation of translation. In order to identify novel factors involved in the ribosome assembly during internal initiation of HCV RNA, northwestern screening of a HeLa cDNA expression library was performed, using HCV IRES RNA as probe. We demonstrate here, that human ribosomal protein L18a, a constituent of 60S subunit, interacts with HCV IRES RNA. This interaction was further confirmed by using a recombinant protein similar to L18a (sL18a), cloned from human blood. Interestingly, addition of increasing concentration of the purified recombinant sL18a protein, showed moderate stimulation of HCV IRES activity in the in vitro translation assay. These observations suggest that the human L18a might influence the HCV IRES mediated translation
    corecore