13 research outputs found
Study of Xuanhuang Pill in protecting against alcohol liver disease using ultra-performance liquid chromatography/time-of-flight mass spectrometry and network pharmacology
IntroductionXuanhuang Pill (XHP) is a traditional Chinese medicine oral formula composed of 10 herbs. This study aims to verify the hepatoprotective activity of XHP and explain its possible mechanism.MethodsThe hepatoprotective activity of XHP was evaluated by constructing a mouse model of alcoholic liver disease, and the mechanism of XHP was preliminarily explained by utilizing ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-QTOF/MS), proteomics and network pharmacology.ResultsThe current study demonstrated that treatment with XHP ameliorated acute alcohol-induced liver injury in mice by significantly reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and triglycerides (TGs) and malondialdehyde (MDA) content. Remarkably, treatment also increased superoxide dismutase (SOD) activity and glutathione (GSH) content. UPLC-QTOF/MS, 199 compounds were identified as within the make-up of the XHP. Network pharmacology analysis showed that 103 targets regulated by 163 chemical components may play an important role in the protective liver effect mediated by XHP. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggest that the HIF-1, FoxO, PI3K-Akt, insulin, and thyroid hormone signaling pathways are key modulators of XHP’s effects. Finally, eight key targets including Mapk1, Mapk3, Akt1, Map2k1, Pik3ca, Pik3cg, Raf1, and Prkca were verified by molecular docking and proteomics analysis, which provide insight into the hepatoprotective effect observed with XHP treatment.ConclusionIn summary, these results improved upon knowledge of the chemical composition and the potential mechanisms of hepatoprotective action of oral XHP treatment, providing foundational support for this formulation as a viable therapeutic option for alcoholic liver disease
Mingjing granule inhibits the subretinal fibrovascular membrane of two-stage laser-induced neovascular age-related macular degeneration in rats
ObjectiveThe study aims to investigate the protective effect of Mingjing granule (MG) in a fibrovascular membrane rat model of neovascular age-related macular degeneration (nAMD) and explore the underlying mechanism.MethodsThe nAMD fibrovascular membrane model was established by two-stage laser photocoagulation. BN rats were randomly divided into four groups: the model group was gavaged with distilled water, the anti-VEGF group was given an intravitreous injection of ranibizumab, the MG + anti-VEGF group was gavaged with MG combined with an intravitreous injection of ranibizumab, and the normal group not modeled only fed conventionally. Lesions were evaluated by color fundus photograph, optical coherence tomography, fundus fluorescein angiography, and retinal pigment epithelial–choroid–sclera flat mount. The changes in the retinal structure were observed by histopathology. The expression of inflammatory cell markers F4/80, Iba-1, and glial fibrillary acidic protein (GFAP); the fibrosis-related factors collagen-1, fibronectin, α-smooth muscle actin (α-SMA), and transforming growth factor-beta (TGF-β); and the complement system-related factors C3a and C3aR in the retina were detected by immunofluorescence or qRT-PCR.ResultsThe current study revealed that MG + anti-VEGF administration more significantly reduced the thickness of fibrovascular lesions, suppressed vascular leakage (exudation area and mean density value), inhibited the area of fibrovascular lesions, and restrained the formation of the fibrovascular membrane than the anti-VEGF agent alone in the two-stage laser-induced rat model. The fluorescence intensities of F4/80, Iba-1, collagen-1, fibronectin, TGF-β, and C3aR showed more significant inhibition in MG + anti-VEGF-treated rats than the anti-VEGF agent alone. The mRNA expression levels of F4/80, Iba-1, GFAP, collagen-1, fibronectin, α-SMA, TGF-β, and C3a showed lower levels in rats treated with MG + anti-VEGF than the anti-VEGF agent alone.ConclusionCombining MG with anti-VEGF treatment inhibits the growth of the fibrovascular membrane more effectively than using anti-VEGF treatment alone. The mechanism underlying this effect may involve limiting inflammatory cell aggregation, controlling complement system activation, and decreasing the expression of the fibrotic protein
Proteomics and network pharmacology of Ganshu Nuodan capsules in the prevention of alcoholic liver disease
IntroductionGanshu Nuodan is a liver-protecting dietary supplement composed of Ganoderma lucidum (G. lucidum) spore powder, Pueraria montana (Lour.) Merr. (P. montana), Salvia miltiorrhiza Bunge (S. miltiorrhiza) and Astragalus membranaceus (Fisch.) Bunge. (A. membranaceus). However, its pharmacodynamic material basis and mechanism of action remain unknown.MethodsA mouse model of acute alcohol liver disease (ALD) induced by intragastric administration of 50% alcohol was used to evaluate the hepatoprotective effect of Ganshu Nuodan. The chemical constituents of Ganshu Nuodan were comprehensively identified by UPLC-QTOF/MS, and then its pharmacodynamic material basis and potential mechanism of action were explored by proteomics and network pharmacology.ResultsGanshu Nuodan could ameliorate acute ALD, which is mainly manifested in the significant reduction of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and malondialdehyde (MDA) content in liver and the remarkably increase of glutathione (GSH) content and superoxide dismutase (SOD) activity in liver. Totally 76 chemical constituents were identified from Ganshu Nuodan by UPLC-QTOF/MS, including 21 quinones, 18 flavonoids, 11 organic acids, 7 terpenoids, 5 ketones, 4 sterols, 3 coumarins and 7 others. Three key signaling pathways were identified via proteomics studies, namely Arachidonic acid metabolism, Retinol metabolism, and HIF-1 signaling pathway respectively. Combined with network pharmacology and molecular docking, six key targets were subsequently obtained, including Ephx2, Lta4h, Map2k1, Stat3, Mtor and Dgat1. Finally, these six key targets and their related components were verified by molecular docking, which could explain the material basis of the hepatoprotective effect of Ganshu Nuodan.ConclusionGanshu Nuodan can protect acute alcohol-induced liver injury in mice by inhibiting oxidative stress, lipid accumulation and apoptosis. Our study provides a scientific basis for the hepatoprotective effect of Ganshu Nuodan in acute ALD mice and supports its traditional application
Topical Treatment with Xiaozheng Zhitong Paste (XZP) Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling
To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05). Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all). Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats
pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells
A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20–30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors
Table_2_RETRACTED: pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells.DOCX
A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20–30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors.</p
Table_1_RETRACTED: pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells.DOCX
A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20–30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors.</p
Table_1_pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells.DOCX
<p>A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20–30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors.</p
Table_2_pH Responsive Polymer Micelles Enhances Inhibitory Efficacy on Metastasis of Murine Breast Cancer Cells.DOCX
<p>A pH sensitive micellar cargo was fabricated for pH triggered delivery of hydrophobic drug paclitaxel with pH controlled drug release profiles. The size, drug loading content, and encapsulation efficiency of PTX loaded micelles were 20–30 nm, 7.5%, 82.5%, respectively. PTX loaded PELA-PBAE micelles could enhance the intracellular uptake of a model drug significantly, with increased cytotoxicity and inhibition of tumor metastasis on 4T1 cells, as confirmed by wound healing assay and tumor cells invasion assay. The expression of metastasis and apoptosis correlated proteins on 4T1 cells decreased remarkably after intervention by PTX loaded polymer micelles, as demonstrated by western blotting and quantitative reverse transcriptional-polymerase chain reaction (qRT-PCR). Our results demonstrated the pH responsive polymer micelles might have the potential to be used in the treatment of metastatic breast tumors.</p