16 research outputs found

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Research on Vehicle Frame Optimization Methods Based on the Combination of Size Optimization and Topology Optimization

    No full text
    The efficient development of electric vehicles is essential to drive society towards sustainable development. Designing a lightweight frame is a key strategy to improve the economy and environment, increase energy efficiency, and reduce carbon emissions. Taking an automatic loading and unloading mixer truck as the research object, a force analysis of its frame was conducted under six typical working conditions. A size optimization method based on a hybrid model of the Kriging model and the analytic hierarchy process (AHP) is proposed. An approximate model of the mass and maximum stress of the frame was established using the Kriging model, and the Kriging model was optimized by using the multi-objective genetic optimization algorithm and the AHP method. Meanwhile, topology optimization was introduced to improve the structural performance of the frame and reduce its weight. The optimization results show that the overall weight of the frame is reduced by 11.96% compared to the pre-optimization period, though it still meets the material performance specifications. By comparing the iterative curves of the single Kriging model with those of the AHP model, it can be seen that the initial optimization efficiency of the hybrid model is about twice as much as that of the AHP model, and the final optimization result is improved by about 3.6% compared with the Kriging model. This validates the hybrid model as an effective tool for the multi-objective optimization of electric vehicle frames, providing more efficient and accurate optimization results for frame design

    Synthesis of CoxZn1-x zeolitic imidazolate frameworks (ZIFs) as efficient photocatalyst with high stability

    No full text
    Sodalite-topology zeolitic imidazolate framework-8 (ZIF-8) composed of Zn2+ ions and organic linkers exhibit excellent physical and chemical properties such as high porosity, large surface area and abundant active sites. While it can only be excited by UV light due to the wide bandgap energy, which limits its application in photocatalysis. Herein, we synthesized Co-doped ZIF-8 with various ratio and systematically investigated its promotion effects on photocatalytic reaction. The as-synthesized CoxZn1-x-ZIF possessed homogeneous dodecahedron crystals and developed porous structure, together with obvious light absorption in visible frequency range. The photocatalytic performance of methylene blue (MB) had been improved with increasing of Co2+/Zn2+ ratio in ZIFs, while the reaction stability of Co0.75Zn0.25-ZIF and Co1.0-ZIF significantly decreased due to the apparent collapse in crystal phase. Taken together, Co0.5Zn0.5-ZIF was demonstrated to be a remarkable photocatalyst with high photocatalytic activity and strong stability. The photogenerated ·O2− and ·OH radicals were found to react as main oxygen species in photocatalytic reaction

    Advances in the study of plant-derived extracellular vesicles in the skeletal muscle system

    No full text
    Plant-derived extracellular vesicles (PDEV) constitute nanoscale entities comprising lipids, proteins, nucleic acids and various components enveloped by the lipid bilayers of plant cells. These vesicles play a crucial role in facilitating substance and information transfer not only between plant cells but also across different species. Owing to its safety, stability, and the abundance of raw materials, this substance has found extensive utilization in recent years within research endeavors aimed at treating various diseases. This article provides an overview of the pathways and biological characteristics of PDEV, along with the prevalent methods employed for its isolation, purification, and storage. Furthermore, we comprehensively outline the therapeutic implications of diverse sources of PDEV in musculoskeletal system disorders. Additionally, we explore the utilization of PDEV as platforms for engineering drug carriers, aiming to delve deeper into the significance and potential contributions of PDEV in the realm of the musculoskeletal system
    corecore