10,708 research outputs found
Cellular processes associated with LRRK2 function and dysfunction.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) encoding gene are the most common cause of monogenic Parkinson's Disease (PD). The identification of LRRK2 polymorphisms associated with increased risk for sporadic PD, as well as the observation that LRRK2-PD has an almost indistinguishable pathological phenotype from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic PD cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with PD reside within the enzymatic core of LRRK2, suggesting the modification of its activity greatly impacts disease onset and progression. Although progress has been gained since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review will discuss the state of current knowledge for the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. As well, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function shall also be discussed. This article is protected by copyright. All rights reserved
Computational analysis of the LRRK2 interactome.
LRRK2 was identified in 2004 as the causative protein product of the Parkinson's disease locus designated PARK8. In the decade since then, genetic studies have revealed at least 6 dominant mutations in LRRK2 linked to Parkinson's disease, alongside one associated with cancer. It is now well established that coding changes in LRRK2 are one of the most common causes of Parkinson's. Genome-wide association studies (GWAs) have, more recently, reported single nucleotide polymorphisms (SNPs) around the LRRK2 locus to be associated with risk of developing sporadic Parkinson's disease and inflammatory bowel disorder. The functional research that has followed these genetic breakthroughs has generated an extensive literature regarding LRRK2 pathophysiology; however, there is still no consensus as to the biological function of LRRK2. To provide insight into the aspects of cell biology that are consistently related to LRRK2 activity, we analysed the plethora of candidate LRRK2 interactors available through the BioGRID and IntAct data repositories. We then performed GO terms enrichment for the LRRK2 interactome. We found that, in two different enrichment portals, the LRRK2 interactome was associated with terms referring to transport, cellular organization, vesicles and the cytoskeleton. We also verified that 21 of the LRRK2 interactors are genetically linked to risk for Parkinson's disease or inflammatory bowel disorder. The implications of these findings are discussed, with particular regard to potential novel areas of investigation
Design criteria for ultrafast optical parametric amplifiers
open2noOptical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.Manzoni, C.; Cerullo, G.Manzoni, Cristian; Cerullo, GIULIO NICOL
Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies.
The past decade has witnessed huge advances in our understanding of the genetics underlying Parkinson's disease. Identifying commonalities in the biological function of genes linked to Parkinson's provides an opportunity to elucidate pathways that lead to neuronal degeneration and eventually to disease. We propose that the genetic forms of Parkinson's disease largely associated with α-synuclein-positive neuropathology (SNCA, LRRK2, and GBA) are brought together by involvement in the autophagy/lysosomal pathway and that this represents a unifying pathway to disease in these cases
Wide-range optical spin orientation in Ge from near-infrared to visible light
Ge-based spin-photodiodes have been employed to investigate the spectral dependence of optical spin orientation in germanium, in the range 400-1550 nm. We found the expected maximum in the spin polarization of photocarriers for excitation at the direct gap in Γ (1550 nm) and a second sizable peak due to photogeneration in the L valleys (530 nm). Data suggest distinct spin depolarization mechanisms for excitation at Γ and L, with shorter spin relaxation times whether the X point is involved. These devices can be used as integrated photon-helicity detectors over a wide spectral range
Solid-phase synthesis of peptides containing reverse-turn mimetic bicyclic lactams
The solid-phase synthesis and characterization of a series of peptides (4-15) containing reverse-turn mimetic bicyclic lactams is reported. The bicyclic lactams (1a, 1b) possess high structural similarity to the two central residues of a Pturn. Amino acid conjugates of these bicyclic lactams were synthesized on solid supports following a g-fluorenylmethoxycarbonyl (FMOC) protection strategy on WangMerrifield resin. Coupling between amino acids was accomplished by means of diisopropylcarbodiimide (DIC)/ hydroxyazabenzotriazole (HOAt). Coupling between amino acids and the mimics was performed with the potent Carpino's reagent O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramelhyluronium hexafluorophosphate (HATU). The final compounds were cleaved from the resin and obtained as N-acetylated methyl esters or benzyl amides
Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits
Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most notably, electromagnetic modeling of the corresponding scattering spectra verified that the thickness and quality of the resulting gold shell ensures an optical response equal to that of pure gold nanostructures
- …