296 research outputs found
Recommended from our members
Using Magnetic Levitation to Separate Mixtures of Crystal Polymorphs
Magnetische Levitation (MagLev) ist eine einfache Trennmethode fĂŒr Kristallpolymorphe mit Dichteunterschieden (ÎÏ) von nur 0.001â
gâcmâ3. FĂŒr vier organische Verbindungen wurden dichtebasierte Trennungen verschiedener kristalliner Formen gezeigt: 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophencarbonitril, Sulfathiazol, Carbamazepin und trans-ZimtsĂ€ure.Chemistry and Chemical Biolog
Recommended from our members
Separation and enrichment of enantiopure from racemic compounds using magnetic levitation
Crystallization of a solution with high enantiomeric excess can generate a mixture of crystals of the desired enantiomer and the racemic compound. Using a mixture of S-/RS-ibuprofen crystals as a model, we demonstrated that magnetic levitation (MagLev) is a useful technique for analysis, separation and enantioenrichment of chiral/racemic products.Chemistry and Chemical Biolog
GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5Êč and 3Êč ends of its target genes
The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5âČ and 3âČ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5âČ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3âČ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5âČ and 3âČ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions
Recommended from our members
Fabrication of Low-Cost Paper-Based Microfluidic Devices by Embossing or Cut-and-Stack Methods
This communication describes the use of embossing, and âcut-and-stackâ methods of assembly, to generate microfluidic devices from omniphobic paper, and demonstrates that fluid flowing through these devices behaves similarly to fluid in an open-channel microfluidic device. The porosity of the paper to gasses allows processes not possible in devices made using PDMS or other non-porous materials. Droplet generators and phase separators, for example, could be made by embossing âTâ-shaped channels on paper. Vertical stacking of embossed or cut layers of omniphobic paper generated three-dimensional systems of microchannels. The gas permeability of the paper allowed fluid in the microchannel to contact and exchange with environmental or directed gases. An aqueous stream of water containing a pH-indicator, as one demonstration, changed color upon exposure to air containing HCl or NH3 gases.Chemistry and Chemical Biolog
Incarceration as a key variable in racial disparities of asthma prevalence
<p>Abstract</p> <p>Background</p> <p>Despite the disproportionate incarceration of minorities in the United States, little data exist investigating how being incarcerated contributes to persistent racial/ethnic disparities in chronic conditions. We hypothesized that incarceration augments disparities in chronic disease.</p> <p>Methods</p> <p>Using data from the New York City Health and Nutrition Examination Study, a community-based survey of 1999 adults, we first estimated the association between having a history of incarceration and the prevalence of asthma, diabetes, hypertension using propensity score matching methods. Propensity scores predictive of incarceration were generated using participant demographics, socioeconomic status, smoking, excessive alcohol and illicit drug use, and intimate partner violence. Among those conditions associated with incarceration, we then performed mediation analysis to explore whether incarceration mediates racial/ethnic disparities within the disease.</p> <p>Results</p> <p>Individuals with a history of incarceration were more likely to have asthma compared to those without (13% vs. 6%, p < 0.05) and not more likely to have diabetes or hypertension, after matching on propensity scores. Statistical mediation analysis revealed that increased rates of incarceration among Blacks partially contribute to the racial disparity in asthma prevalence.</p> <p>Conclusion</p> <p>Having been incarcerated may augment racial disparities in asthma among NYC residents. Eliminating health disparities should include a better understanding of the role of incarceration and criminal justice policies in contributing to these disparities.</p
Good on paper: the gap between programme theory and real-world context in Pakistan's Community Midwife programme
Objective
To understand why skilled birth attendanceâan acknowledged strategy for reducing maternal deathsâhas been effective in some settings but is failing in Pakistan and to demonstrate the value of a theory-driven approach to evaluating implementation of maternal healthcare interventions.
Design
Implementation research was conducted using an institutional ethnographic approach.
Setting and population
National programme and local community levels in Pakistan.
Methods
Observations, focus group discussions, and in-depth interviews were conducted with 38 Community Midwives (CMWs), 20 policymakers, 45 healthcare providers and 136 community members. A critical policy document review was conducted. National and local level data were brought together.
Main outcomes
Alignment of programme theory with real-world practice.
Results
Data revealed gaps between programme theory, assumptions and reality on the ground. The design of the programme failed to take into account: (1) the incongruity between the role of a midwife and dominant class and gendered norms that devalue such a role; (2) market and consumer behaviour that prevented CMWs from establishing private practices; (3) the complexity of publicâprivate sector cooperation. Uniform deployment policies failed to consider existing provider density and geography.
Conclusions
Greater attention to programme theory and the âreal-worldâ setting during design of maternal health strategies is needed to achieve consistent results in different contexts
A holin and an endopeptidase are essential for chitinolytic protein secretion in <i>Serratia marcescens</i>
Pathogenic bacteria adapt to their environment and manipulate the biochemistry of hosts by secretion of effector molecules. Serratia marcescens is an opportunistic pathogen associated with healthcare-acquired infections and is a prolific secretor of proteins, including three chitinases (ChiA, ChiB, and ChiC) and a chitin binding protein (Cbp21). In this work, genetic, biochemical, and proteomic approaches identified genes that were required for secretion of all three chitinases and Cbp21. A genetic screen identified a holin-like protein (ChiW) and a putative l-alanyl-d-glutamate endopeptidase (ChiX), and subsequent biochemical analyses established that both were required for nonlytic secretion of the entire chitinolytic machinery, with chitinase secretion being blocked at a late stage in the mutants. In addition, live-cell imaging experiments demonstrated bimodal and coordinated expression of chiX and chiA and revealed that cells expressing chiA remained viable. It is proposed that ChiW and ChiX operate in tandem as components of a protein secretion system used by gram-negative bacteria
- âŠ