9 research outputs found

    The effects of high-velocity hamstring muscle training on injury prevention in football players

    Get PDF
    Background: Explosive and fast body movements, sprints, jumps and quick changes of direction, which are characteristic of the football training, place considerable strain on the hamstring muscles. Due to the high occurrence of hamstring injuries, new preventive strategies are required that focus on high-velocity training. The purpose was to assess the effectiveness of high-velocity elastic-band training in reducing the occurrence of hamstring injuries in football players.Methods: Male football players from 15 teams (n = 319) playing in national competitions participated in this study. The players were involved in a 5-week exercise period in either the intervention group (INT) or the control group (CON), with a follow-up period of ∼4 months where hamstring injuries and exposure time were recorded. The INT group had two to three sessions per week of elastic-band training with low-load, high-velocity leg curls while lying prone; the CON group performed self-paced football-specific drills.Results: The incidence rate of hamstring injuries was 6.5% in the INT group (8 out of 123 players) and 9.2% in the CON group (18 out of 196 players). Although the INT group showed almost 1/3 reduction in hamstring injury incidence compared to the CON group, the difference was not statistically significant (p > 0.05). Moreover, no differences (p > 0.05, odds ratio [OR] = trivial-to-small) in distribution between the groups were found in hamstring injury characteristics (leg dominance and mechanism) except for the distribution of injuries that occurred during matches or training (p = 0.036; OR = 6.14, moderate).Conclusion: The program of high-velocity elastic-band training did not prove to be effective in preventing hamstring muscle injuries in football players despite displaying some positive indications that could be considering when creating injury prevention programs

    Riding a Mechanical Scooter from the Inconvenient Side Promotes Muscular Balance Development in Children

    No full text
    Mechanical scooter riding is a popular physical activity among children, but little is known about the differences in muscle loading between the dominant and non-dominant sides during this activity. The objective of this study was to identify the muscle activation patterns in children’s dominant and non-dominant legs as they rode scooters on the convenient and inconvenient sides. The study included nine healthy children aged 6–8. The participants rode 20 m on a mechanical scooter at a self-selected pace using both the convenient and inconvenient sides. Electromyography was used to measure the muscle activity in the dominant and non-dominant legs during the pushing and gliding phases. A 20 m sprint run was used as a control exercise to estimate the typical differences in muscle activation between the dominant and non-dominant legs. In the pushing phase, the symmetry index for five of the eight analyzed muscles exceeded 50% (p p < 0.05). Upon observing children who changed sides while riding a scooter, it was found that the pattern of muscle activation displayed a reverse trend that resembled the initial pattern. Our study indicated notable differences in muscle activity patterns between the dominant and non-dominant sides of individual leg muscles during children’s scooter riding. These patterns were reversed when children switched sides on the scooter. These findings suggest that using both legs and switching sides while riding a scooter may be a viable strategy for promoting balanced muscular development

    Anaerobic performance profiling in elite amateur boxers /

    No full text
    While anaerobic fitness is highly important for the performance in Olympic (amateur) boxing, the relationship between anaerobic performance metrics is poorly understood, and profiling boxers according to their anaerobic capacity is still a challenge. With the current study in elite amateur boxers, we aimed to compare the metabolic and cardiovascular responses to different maximal tests and the intercorrelations between performance indices (peak and mean power, duration of the test, punching frequency) of several all-out tests and their correlation to physiological response metrics (blood lactate and heart rate, HR). Twelve male Olympic boxers performed a battery of tests, including 30 s Wingate cycling and arm cranking, boxing bag punching, steep uphill treadmill running to exhaustion, and progressive treadmill running VO2max test. Performance indices of different anaerobic tests were not closely correlated except for the duration of uphill running with body weight scaled (relative) peak and mean power produced during Wingate cycling test and absolute mean power of both Wingate tests. The number of punches landed on a bag per 30 s was associated only with relative power achieved during Wingate cycling test. HRpeak but not peak lactate response correlated strongly across exercise tasks. Finally, no correlation between the highly developed aerobic and anaerobic capacity, suggests a complex picture of the adaptation in elite amateur boxers

    Response of knee extensor muscle-tendon unit stiffness to unaccustomed and repeated high-volume eccentric exercise

    No full text
    The purposes of this study were to investigate the muscle-tendon unit stiffness response and to compare the stiffness with those of other indirect markers induced by two bouts of unaccustomed eccentric exercise. Eleven untrained men performed two bouts of 200 maximal eccentric contractions of the right quadriceps 4 weeks apart. Changes in stiffness, pain evoked by stretching and pressure, plasma creatine kinase (CK) activity, and muscle thickness were followed for 7 days after each bout. Stiffness and pain peaked immediately and 1 day after the first exercise bout, whereas CK and thickness were highest 4 and 7 days after the first exercise bout, respectively (p < 0.05 for all). Muscular pain, thickness, and stiffness responses were lower by 53.3%, 99%, and 11.6%, respectively, after the repeated bout compared to after the first bout (p < 0.05 for all), while CK activity response did not differ significantly between bouts. High responders for an increase in muscle-tendon unit stiffness showed a repeated-bout effect for stiffness, pain, and CK activity (by 29%, 65%, and 98%, p < 0.05 for all), but the repeated-bout effect was not that clear in low responders. These findings suggest that a repeated eccentric exercise bout effect on stiffness in quadriceps is mostly not associated with muscle pain and CK activity, but there are large individual differences

    Adding high-intensity interval training to classical resistance training does not impede the recovery from inactivity-induced leg muscle weakness

    No full text
    Inactivity is known to induce muscle weakness, and chronically increased levels of reactive oxygen species (ROS) are proposed to have a central causative role in this process. Intriguingly, high-intensity interval training (HIIT), which involves bursts of high ROS production, can have positive effects in pathological conditions with chronically increased ROS. Here, young male volunteers were exposed to 3 weeks of unloading of the dominant leg followed by 3 weeks of resistance training without (Ctrl group) or with the addition of all-out cycling HIIT. Changes in muscle thickness were assessed by ultrasonography, and contractile function was studied by measuring the torque during maximal voluntary contractions (MVC). The results show an ~6% decrease in vastus lateralis thickness after the unloading period, which was fully restored after the subsequent training period in both the Ctrl and HIIT groups. MVC torque was decreased by ~11% after the unloading period and recovered fully during the subsequent training period in both groups. All-out cycling performance was improved by the 3 weeks of HIIT. In conclusion, the decline in muscle size and function after 3 weeks of unloading was restored by 3 weeks of resistance training regardless of whether it was combined with HIIT

    Effect of training and match loads on hamstring passive stiffness in professional soccer players

    No full text
    Objective: the purpose of this study was to identify differences in hamstring passive stiffness between the pre-season and in-season periods. Methods: Hamstring strength and passive stiffness were measured in professional male soccer players before and after the pre-season (4 weeks), and after the in-season (6 weeks) periods using an isokinetic dynamometer. Muscle passive stiffness was determined from the slope of the passive torque–angle relationship. External loads (acceleration and jumps) were monitored by GPS and internal loads by questionnaire. Results: Hamstring passive stiffness increased after 10 weeks of training and matches, without changes in passive peak torque and range of motion. The hamstring passive stiffness modifications were associated with the volume and intensity of accelerations and jumps. The individual data analysis also provided some support for the suppression of the biomechanical adaptation in the subjects with relatively large external load. Conclusions: Regular training and match workouts increase hamstring passive stiffness in professional soccer players but the adaptation of muscle-tendon unit passive elements might not occur if players experience excessive mechanical stress

    Daily resting heart rate variability in adolescent swimmers during 11 weeks of training

    No full text
    Adolescent athletes are particularly vulnerable to stress. The current study aimed to monitor one of the most popular and accessible stress markers, heart rate variability (HRV), and its associations with training load and sleep duration in young swimmers during an 11-week training period to evaluate its relevance as a tool for monitoring overtraining. National-level swimmers (n = 22, age 14.3 ± 1.0 years) of sprint and middle distance events followed individually structured training programs prescribed by their swimming coach with the main intention of preparing for the national championships. HRV after awakening, during sleep and training were recorded daily. There was a consistent ~4.5% reduction in HRV after 3–5 consecutive days of high (>6 km/day) swimming volume, and an inverse relationship of HRV with large (>7.0 km/day) shifts in total training load (r = −0.35, p < 0.05). Day-to-day HRV did not significantly correlate with training volume or sleep duration. Taken together, these findings suggest that the value of HRV fluctuations in estimating the balance between the magnitude of a young athlete’s physical load and their tolerance is limited on a day-to-day basis, while under sharply increased or extended training load the lower HRV becomes an important indicator of potential overtraining

    Functionalized Electrospun Scaffold&ndash;Human-Muscle-Derived Stem Cell Construct Promotes In Vivo Neocartilage Formation

    No full text
    Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL&ndash;scaffolds were functionalized with ozone and loaded with TGF-&beta;3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated (&ldquo;na&iuml;ve&rdquo; (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-&beta;3 and hMDSC compared to NO and scaffolds without TGF-&beta;3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-&beta;3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-&beta;3-loaded scaffold with hMDSC is a promising tool in neocartilage formation
    corecore