112 research outputs found
Aerial and Ground-Based Optical Gas Imaging Survey of Uinta Basin Oil and Gas Wells
We deployed a helicopter with an infrared optical gas imaging camera to detect hydrocarbon emissions from 3,428 oil and gas facilities (including 3,225 producing oil and gas well pads) in Utah’s Uinta Basin during winter and spring 2018. We also surveyed 419 of the same well pads from the ground. Winter conditions led to poor contrast between emission plumes and the ground, leading to a detection limit for the aerial survey that was between two and six times worse than a previous summertime survey. Because the ground survey was able to use the camera’s high-sensitivity mode, the rate of detected emission plumes was much higher in the ground survey (31% of all surveyed well pads) relative to the aerial survey (0.5%), but colder air temperatures appeared to impair plume detection in the ground survey as well. The aerial survey cost less per facility visited, but the ground survey cost less per emission plume detected.
Well pads with detected emissions during the ground and aerial surveys had higher oil and gas production, were younger, were more likely to be oil well pads, and had more liquid storage tanks per pad relative to the entire surveyed population. The majority of observed emission plumes were from liquid storage tanks (75.9% of all observed plumes), including emissions from pressure relief valves and thief hatches on the tank or from piping that connects to the tank. Well pads with control devices to reduce emissions from tanks (combustors or vapor recovery units) were more likely to have detected emissions. This finding does not imply that the control devices themselves were not functioning properly. Instead, gas was escaping into the atmosphere before it reached control devices. Pads with control devices tended to be newer and have higher oil and gas production, which probably explains their higher rate of detected emissions
Emissions of organic compounds from produced water ponds I: Characteristics and speciation
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2–C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013–2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions.
Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6–C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes
Universal Scaling, Entanglements, and Knots of Model Chain Molecules
By identifying the maximally random jammed state of freely jointed chains of tangent hard spheres we are able to determine the distinct scaling regimes characterizing the dependence of chain dimensions and topology on volume fraction. Calculated distributions of (i) the contour length of the primitive paths and (ii) the number of entanglements per chain agree remarkably well with recent theoretical predictions in all scaling regimes. Furthermore, our simulations reveal a hitherto unsuspected connection between purely intramolecular (knots) and intermolecular (entanglements) topological constraints
Development of an enhanced recovery after surgery program for pediatric solid tumors
IntroductionEnhanced recovery after surgery (ERAS) is an evidence-based, multi-modal approach to decrease surgical stress, expedite recovery, and improve postoperative outcomes. ERAS is increasingly being utilized in pediatric surgery. Its applicability to pediatric patients undergoing abdominal tumor resections remains unknown.Methods and AnalysisA group of key stakeholders adopted ERAS principles and developed a protocol suitable for the variable complexity of pediatric abdominal solid tumor resections. A multi-center, prospective, propensity-matched case control study was then developed to evaluate the feasibility of the protocol. A pilot-phase was utilized prior to enrollment of all patients older than one month of age undergoing any abdominal, retroperitoneal, or pelvic tumor resections. The primary outcome was 90-day complications per patient. Additional secondary outcomes included: ERAS protocol adherence, length of stay, time to administration of adjuvant chemotherapy, readmissions, reoperations, emergency room visits, pain scores, opioid usage, and differences in Quality of Recovery 9 scores.Ethics and DisseminationInstitutional review board approval was obtained at all participating centers. Informed consent was obtained from each participating patient. The results of this study will be presented at pertinent society meetings and published in peer-reviewed journals. We expect the results will inform peri-operative care for pediatric surgical oncology patients and provide guidance on initiation of ERAS programs. We anticipate this study will take four years to meet accrual targets and complete follow-up.Trial Registration NumberNCT04344899
A Model for the Evolution of Nucleotide Polymerase Directionality
Background: In all known living organisms, every enzyme that synthesizes nucleic acid polymers does so by adding nucleotide 59-triphosphates to the 39-hydroxyl group of the growing chain. This results in the well known 5’?3’ directionality of all DNA and RNA Polymerases. The lack of any alternative mechanism, e.g. addition in a 3’?5 ’ direction, may indicate a very early founder effect in the evolution of life, or it may be the result of a selective pressure against such an alternative. Methodology/Principal Findings: In an attempt to determine whether the lack of an alternative polymerase directionality is the result of a founder effect or evolutionary selection, we have constructed a basic model of early polymerase evolution. This model is informed by the essential chemical properties of the nucleotide polymerization reaction. With this model, we are able to simulate the growth of organisms with polymerases that synthesize either 5’?3 ’ or 3’?5 ’ in isolation or in competition with each other. Conclusions/Significance: We have found that a competition between organisms with 5’?3 ’ polymerases and 3’?5’ polymerases only results in a evolutionarily stable strategy under certain conditions. Furthermore, we have found that mutations lead to a much clearer delineation between conditions that lead to a stable coexistence of these populations and conditions which ultimately lead to success for the 5’?3 ’ form. In addition to presenting a plausible explanation for th
European Competition Policy in International Markets
International audienceChanges in the institutional, technological and economic environment raise new challenges to the European competition policy. In this context, it is timely for European authorities to appraise the external dimension of the European competition policy as well as its articulation with current internal reforms. Globalisation can increase the costs of monitoring and seriously reduce the ability of European authorities to tackle cross-border anti-competitive conducts. In addition, conflicts are exacerbated by industrial policy motivations. As it is unlikely that the sole application of the territoriality and extraterritoriality principles to competition rules could yield an optimal international competition system, globalisation calls for higher levels and types of cooperation. Given that bilateral cooperation and especially the implementation of comity principles could be of no value when laws or interests are sources of international conflicts, three main paths could be therefore encouraged: The continuous harmonization of rules through the joint action of OECD and ICN; the higher cooperation in the confidential information exchange; the establishment of global anti-trust institutions. Although WTO is legitimate in judging questions related market access and entry barriers, it is less equipped to assess international hard core cartels or M&A reviews. As a substitute for WTO, a multilevel system, like the EU system, could be promoted. For political and pragmatic reasons, it could be composed in a first step of a hard core of countries like the EU, Japan and the U.S. It could be associated with the creation of an international Court of Justice for competition. In addition to these external reforms, some internal reforms could be required. Competition authorities have to develop further competition advocacy to give a higher priority to competition issues in other EU policies and national regulation. A parallel and complementary reform could consist in making the European competition agency independent from State Members' interference
Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates
Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species
Deciphering the stem cell machinery as a basis for understanding the molecular mechanism underlying reprogramming
Stem cells provide fascinating prospects for biomedical applications by combining the ability to renew themselves and to differentiate into specialized cell types. Since the first isolation of embryonic stem (ES) cells about 30 years ago, there has been a series of groundbreaking discoveries that have the potential to revolutionize modern life science. For a long time, embryos or germ cell-derived cells were thought to be the only source of pluripotency—a dogma that has been challenged during the last decade. Several findings revealed that cell differentiation from (stem) cells to mature cells is not in fact an irreversible process. The molecular mechanism underlying cellular reprogramming is poorly understood thus far. Identifying how pluripotency maintenance takes place in ES cells can help us to understand how pluripotency induction is regulated. Here, we review recent advances in the field of stem cell regulation focusing on key transcription factors and their functional interplay with non-coding RNAs
- …