51 research outputs found
Influence of Onset to Imaging Time on Radiological Thrombus Characteristics in Acute Ischemic Stroke
Introduction: Radiological thrombus characteristics are associated with patient outcomes and treatment success after acute ischemic stroke. These characteristics could be expected to undergo time-dependent changes due to factors influencing thrombus architecture like blood stasis, clot contraction, and natural thrombolysis. We investigated whether stroke onset-to-imaging time was associated with thrombus length, perviousness, and density in the MR CLEAN Registry population.Methods: We included 245 patients with M1-segment occlusions and thin-slice baseline CT imaging from the MR CLEAN Registry, a nation-wide multicenter registry of patients who underwent endovascular treatment for acute ischemic stroke within 6.5 h of onset in the Netherlands. We used multivariable linear regression to investigate the effect of stroke onset-to-imaging time (per 5 min) on thrombus length (in mm), perviousness and density (both in Hounsfield Units). In the first model, we adjusted for age, sex, intravenous thrombolysis, antiplatelet use, and history of atrial fibrillation. In a second model, we additionally adjusted for observed vs. non-observed stroke onset, CT-angiography collateral score, direct presentation at a thrombectomy-capable center vs. transfer, and stroke etiology. We performed exploratory subgroup analyses for intravenous thrombolysis administration, observed vs. non-observed stroke onset, direct presentation vs. transfer, and stroke etiology.Results: Median stroke onset-to-imaging time was 83 (interquartile range 53–141) min. Onset to imaging time was not associated with thrombus length nor perviousness (β 0.002; 95% CI −0.004 to 0.007 and β −0.002; 95% CI −0.015 to 0.011 per 5 min, respectively) and was weakly associated with thrombus density in the fully adjusted model (adjusted β 0.100; 95% CI 0.005–0.196 HU per 5 min). The subgroup analyses showed no heterogeneity of these findings in any of the subgroups, except for a significantly positive relation between onset-to-imaging time and thrombus density in patients transferred from a primary stroke center (adjusted β 0.18; 95% CI 0.022–0.35).Conclusion: In our population of acute ischemic stroke patients, we found no clear association between onset-to-imaging time and radiological thrombus characteristics. This suggests that elapsed time from stroke onset plays a limited role in the interpretation of radiological thrombus characteristics and their effect on treatment results, at least in the early time window
Association of thrombus density and endovascular treatment outcomes in patients with acute ischemic stroke due to M1 occlusions
PURPOSE: We aimed to study the association of non-contrast CT (NCCT) thrombus density with procedural and clinical outcomes in patients with acute ischemic stroke who underwent endovascular treatment (EVT). Since thrombus density is associated with thrombus location, we focused on M1 occlusions only.METHODS: Patients with available thin-slice (< 2.5 mm) NCCT were included from a nationwide registry. Regression models were used to assess the relation between thrombus density (per Hounsfield unit [HU]) and the following outcomes. For reperfusion grade, adjusted common odds ratios (acOR) indicated a 1-step shift towards improved outcome per HU increase in thrombus density. For the binary outcomes of first-pass reperfusion (first-pass extended thrombolysis in cerebral infarction [eTICI] 2C-3, FPR), functional independence [90-day modified Rankin Scale (mRS) score of 0-2] and mortality), aORs were reported. Adjusted β coefficients (aβ) were reported for 24-h NIHSS and procedure duration in minutes. Outcome differences between first-line treatment devices (stent retriever versus aspiration) were assessed with interaction terms.RESULTS: In 566 patients with M1 occlusions, thrombus density was not associated with reperfusion (acOR 1.01, 95% CI 0.99-1.02), FPR (aOR 1.01, 95% CI 0.99-1.03), mortality (aOR 0.98, 95% CI 0.95-1.00), 24-h NIHSS (aβ - 0.7%, 95% CI - 1.4-0.2), or procedure duration (aβ 0.27, 95% CI - 0.05-0.58). In multivariable analysis, thrombus density was associated with functional independence (aOR 1.02, 95% CI 1.00-1.05). No interaction was found between thrombus density and first-line treatment device for any outcome.CONCLUSION: In patients with M1 occlusions, thrombus density was not clearly associated with procedural and clinical outcomes after EVT.</p
Value of Automatically Derived Full Thrombus Characteristics:An Explorative Study of Their Associations with Outcomes in Ischemic Stroke Patients
(1) Background: For acute ischemic strokes caused by large vessel occlusion, manually assessed thrombus volume and perviousness have been associated with treatment outcomes. However, the manual assessment of these characteristics is time-consuming and subject to inter-observer bias. Alternatively, a recently introduced fully automated deep learning-based algorithm can be used to consistently estimate full thrombus characteristics. Here, we exploratively assess the value of these novel biomarkers in terms of their association with stroke outcomes. (2) Methods: We studied two applications of automated full thrombus characterization as follows: one in a randomized trial, MR CLEAN-NO IV (n = 314), and another in a Dutch nationwide registry, MR CLEAN Registry (n = 1839). We used an automatic pipeline to determine the thrombus volume, perviousness, density, and heterogeneity. We assessed their relationship with the functional outcome defined as the modified Rankin Scale (mRS) at 90 days and two technical success measures as follows: successful final reperfusion, which is defined as an eTICI score of 2b-3, and successful first-pass reperfusion (FPS). (3) Results: Higher perviousness was significantly related to a better mRS in both MR CLEAN-NO IV and the MR CLEAN Registry. A lower thrombus volume and lower heterogeneity were only significantly related to better mRS scores in the MR CLEAN Registry. Only lower thrombus heterogeneity was significantly related to technical success; it was significantly related to a higher chance of FPS in the MR CLEAN-NO IV trial (OR = 0.55, 95% CI: 0.31–0.98) and successful reperfusion in the MR CLEAN Registry (OR = 0.88, 95% CI: 0.78–0.99). (4) Conclusions: Thrombus characteristics derived from automatic entire thrombus segmentations are significantly related to stroke outcomes.</p
Impact of Intracranial Volume and Brain Volume on the Prognostic Value of Computed Tomography Perfusion Core Volume in Acute Ischemic Stroke
Background: Computed tomography perfusion (CTP)-estimated core volume is associated with functional outcomes in acute ischemic stroke. This relationship might differ among patients, depending on brain volume. Materials and Methods: We retrospectively included patients from the MR CLEAN Registry. Cerebrospinal fluid (CSF) and intracranial volume (ICV) were automatically segmented on NCCT. We defined the proportion of the ICV and total brain volume (TBV) affected by the ischemic core as ICVcore and TBVcore. Associations between the core volume, ICVcore, TBVcore, and functional outcome are reported per interquartile range (IQR). We calculated the area under the curve (AUC) to assess diagnostic accuracy.Results: In 200 patients, the median core volume was 13 (5–41) mL. Median ICV and TBV were 1377 (1283–1456) mL and 1108 (1020–1197) mL. Median ICVcore and TBVcore were 0.9 (0.4–2.8)% and 1.7 (0.5–3.6)%. Core volume (acOR per IQR 0.48 [95%CI 0.33–0.69]), ICVcore (acOR per IQR 0.50 [95%CI 0.35–0.69]), and TBVcore (acOR per IQR 0.41 95%CI 0.33–0.67]) showed a lower likelihood of achieving improved functional outcomes after 90 days. The AUC was 0.80 for the prediction of functional independence at 90 days for the CTP-estimated core volume, the ICVcore, and the TBVcore. Conclusion:Correcting the CTP-estimated core volume for the intracranial or total brain volume did not improve the association with functional outcomes in patients who underwent EVT.</p
Collateral Circulation and Outcome in Atherosclerotic Versus Cardioembolic Cerebral Large Vessel Occlusion
Background and Purpose- Due to chronic hypoperfusion, cervical atherosclerosis may promote cerebral collateral circulation. We hypothesized that patients with ischemic stroke due to cervical carotid atherosclerosis have a more extensive collateral circulation and better outcomes than patients with cardioembolism. We tested this hypothesis in a population of patients who underwent endovascular treatment for large vessel occlusion. Methods- From the MR-CLEAN Registry (Multicenter Randomized Controlled Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands), we selected consecutive adult endovascular treatment patients (March 2014 to June 2016) with acute ischemic stroke due to anterior circulation large vessel occlusion and compared patients with cervical carotid artery stenosis >50% to those with cardioembolic etiology. The primary outcome was collateral score, graded on a 4-point scale. Secondary outcomes included the modified Rankin Scale (mRS) score and mortality at 90 days. We performed multivariable regression analyses and adjusted for potential confounders. Results- Of 1627 patients in the Registry, 190 patients with cervical carotid atherosclerosis and 476 with cardioembolism were included. Patients with cervical carotid atherosclerosis were younger (median 69 versus 76 years, P<0.001), more often male (67% versus 47%, P<0.001), more often had an internal carotid artery terminus occlusion (33% versus 18%, P<0.001), and a lower prestroke mRS (mRS score, 0-2; 96% versus 85%, P<0.001), than patients with cardioembolism. Stroke due to cervical carotid atherosclerosis was associated with higher collateral score (adjusted common odds ratio, 1.67 [95% CI, 1.17-2.39]) and lower median mRS at 90 days (adjusted common odds ratio, 1.45 [95% CI, 1.03-2.05]) compared with cardioembolic stroke. There was no statistically significant difference in proportion of mRS 0-2 (aOR, 1.36 [95% CI, 0.90-2.07]) or mortality at 90 days (aOR, 0.80 [95% CI, 0.48-1.34]). Conclusions- Patients with stroke due to cervical carotid atherosclerosis had a more extensive cerebral collateral circulation and a slightly better median mRS at 90 days than patients with cardioembolic stroke
Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks
Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice.
Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke.
Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentation of subtle, intermediate, and severe hypodense lesions. The fully automated infarct segmentation was defined as the combination of the results of these three CNNs. The results of the three-CNNs approach were compared with the results from a single CNN approach and with the reference standard segmentations.
Results: The median infarct volume was 48 mL (IQR 15–125 mL). Comparison between the volumes of the three-CNNs approach and manually delineated infarct volumes showed excellent agreement, with an intraclass correlation coefficient (ICC) of 0.88. Even better agreement was found for severe and intermediate hypodense infarcts, with ICCs of 0.98 and 0.93, respectively. Although the number of patients used for training in the single CNN approach was much larger, the accuracy of the three-CNNs approach strongly outperformed the single CNN approach, which had an ICC of 0.34.
Conclusion: Convolutional neural networks are valuable and accurate in the quantitative assessment of infarct volumes, for both subtle and severe hypodense infarcts in follow-up CT images. Our proposed three-CNNs approach strongly outperforms a more straightforward single CNN approach
Bifurcation occlusions and endovascular treatment outcome in acute ischemic stroke
Background A thrombus in the M1 segment of the middle cerebral artery (MCA) can occlude this main stem only or extend into the M1-M2 bifurcation. The occlusion pattern may affect endovascular treatment (EVT) success, as a bifurcated thrombus may be more prone to fragmentation during retrieval. Objective To investigate whether bifurcated thrombus patterns are associated with EVT procedural and clinical outcomes. Methods Occlusion patterns of MCA thrombi on CT angiography from MR CLEAN Registry patients were classified into three groups: main stem occlusion, bifurcation occlusion extending into one M2 branch, and bifurcation occlusion extending into both M2 branches. Procedural parameters, procedural outcomes (reperfusion grade and embolization to new territory), and clinical outcomes (24-48 hour National Institutes of Health Stroke Scale [NIHSS FU ] score, change in NIHSS scores between 24 and 48 hours and baseline †[NIHSS], and 90-day modified Rankin Scale [mRS] scores) were compared between occlusion patterns. Results We identified 1023 patients with an MCA occlusion of whom 370 (36%) had a main stem occlusion, 151 (15%) a single branch, and 502 (49%) a double branch bifurcation occlusion. There were no statistically significant differences in retrieval method, procedure time, number of retrieval attempts, reperfusion grade, and embolization to new territory between occlusion patterns. Patients with main stem occlusions had lower NIHSS FU scores than patients with single (7 vs 11, p=0.01) or double branch occlusions (7 vs 9, p=0.04). However, there were no statistically significant differences in †NIHSS or in 90-day mRS scores. Conclusions In our population, EVT procedural and long-term clinical outcomes were similar for MCA bifurcation occlusions and MCA main stem occlusions
Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks
Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati
Value of infarct location in the prediction of functional outcome in patients with an anterior large vessel occlusion: results from the HERMES study
Purpose:
Follow-up infarct volume (FIV) is moderately associated with functional outcome. We hypothesized that accounting for infarct location would strengthen the association of FIV with functional outcome.
Methods:
We included 252 patients from the HERMES collaboration with follow-up diffusion weighted imaging. Patients received endovascular treatment combined with best medical management (n = 52%) versus best medical management alone (n = 48%). FIV was quantified in low, moderate and high modified Rankin Scale (mRS)-relevant regions. We used binary logistic regression to study the relation between the total, high, moderate or low mRS-relevant FIVs and favorable outcome (mRS < 2) after 90 days. The strength of association was evaluated using the c-statistic.
Results:
Small lesions only occupied high mRS-relevant brain regions. Lesions additionally occupied lower mRS-relevant brain regions if FIV expanded. Higher FIV was associated with a higher risk of unfavorable outcome, as were volumes of tissue with low, moderate and high mRS relevance. In multivariable modeling, only the volume of high mRS-relevant infarct was significantly associated with favorable outcome. The c-statistic was highest (0.76) for the models that included high mRS-relevant FIV or the combination of high, moderate and low mRS-relevant FIV but was not significantly different from the model that included only total FIV (0.75).
Conclusion:
This study confirms the association of FIV and unfavorable functional outcome but showed no strengthened association if lesion location was taken into account
- …