175 research outputs found
Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields
We calculate the ground-state of a two-dimensional electron gas in a
short-period lateral potential in magnetic field, with the Coulomb
electron-electron interaction included in the Hartree-Fock approximation. For a
sufficiently short period the dominant Coulomb effects are determined by the
exchange interaction. We find numerical solutions of the self-consistent
equations that have hysteresis properties when the magnetic field is tilted and
increased, such that the perpendicular component is always constant. This
behavior is a result of the interplay of the exchange interaction with the
energy dispersion and the spin splitting. We suggest that hysteresis effects of
this type could be observable in magneto-transport and magnetization
experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.
Memorization of short-range potential fluctuations in Landau levels
We calculate energy spectra of a two-dimensional electron system in a
perpendicular magnetic field and periodic potentials of short periods. The
Coulomb interaction is included within a screened Hartree-Fock approximation.
The electrostatic screening is poor and the exchange interaction amplifies the
energy dispersion. We obtain, by numerical iterations, self-consistent
solutions that have a hysteresis-like property. With increasing amplitude of
the external potential the energy dispersion and the electron density become
periodic, and they remain stable when the external potential is reduced to
zero. We explain this property in physical terms and speculate that a real
system could memorize short-range potential fluctuations after the potential
has been turned off.Comment: 11 pages with 4 included figures, Revte
Coulomb effects on the quantum transport of a two-dimensional electron system in periodic electric and magnetic fields
The magnetoresistivity tensor of an interacting two-dimensional electron
system with a lateral and unidirectional electric or magnetic modulation, in a
perpendicular quantizing magnetic field, is calculated within the Kubo
formalism. The influence of the spin splitting of the Landau bands and of the
density of states (DOS) on the internal structure of the Shubnikov-de Haas
oscillations is analyzed. The Coulomb electron - electron interaction is
responsible for strong screening and exchange effects and is taken into account
in a screened Hartree-Fock approximation, in which the exchange contribution is
calculated self-consistently with the DOS at the Fermi level. This
approximation describes both the exchange enhancement of the spin splitting and
the formation of compressible edge strips, unlike the simpler Hartree and
Hartree-Fock approximations, which yield either the one or the other.Comment: 20 pages, revtex, 7 ps figures, to appear in Phys. Rev.
Magnetization in short-period mesoscopic electron systems
We calculate the magnetization of the two-dimensional electron gas in a
short-period lateral superlattice, with the Coulomb interaction included in
Hartree and Hartree-Fock approximations. We compare the results for a finite,
mesoscopic system modulated by a periodic potential, with the results for the
infinite periodic system. In addition to the expected strong exchange effects,
the size of the system, the type and the strength of the lateral modulation
leave their fingerprints on the magnetization.Comment: RevTeX4, 10 pages with 14 included postscript figures To be published
in PRB. Replaced to repair figure
Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum
We compare the quantum and the classical description of the two-dimensional
motion of electrons subjected to a perpendicular magnetic field and a
one-dimensional lateral superlattice defined by spatially periodic magnetic and
electric fields of large amplitudes. We explain in detail the complicated
energy spectra, consisting of superimposed branches of strong and of weak
dispersion, by the correspondence between the respective eigenstates and the
``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review
Assessing XML Data Management with XMark
We discuss some of the experiences we gathered during the development and deployment of XMark, a tool to assess the infrastructure and performance of XML Data Management Systems. Since the appearance of the first XML database prototypes in research institutions and development labs, topics like validation, performance evaluation and optimization of XML query processors have received significant interest. The XMark benchmark follows a tradition in database research and provides a framework to assess the abilities and performance of XML processing system: it helps users to see how a query component integrates into an application and how it copes with a variety of query types that are typically encountered in real-world scenarios. To this end, XMark offers an application scenario and a set of queries; each query is intended to challenge a particular aspect of the query processor like the performance of full-text search combined with structural information or joins. Furthermore, we have designed and made available a benchmark document generator that allows for efficient generation of databases of different sizes ranging from small to very large. In short, XMark attempts to cover the major aspects of XML query processing ranging from small to large document and from textual queries to data analysis and ad hoc queries
Transport through a quantum ring, a dot and a barrier embedded in a nanowire in magnetic field
We investigate the transport through a quantum ring, a dot and a barrier
embedded in a nanowire in a homogeneous perpendicular magnetic field. To be
able to treat scattering potentials of finite extent in magnetic field we use a
mixed momentum-coordinate representation to obtain an integral equation for the
multiband scattering matrix. For a large embedded quantum ring we are able to
obtain Aharanov-Bohm type of oscillations with superimposed narrow resonances
caused by interaction with quasi-bound states in the ring. We also employ
scattering matrix approach to calculate the conductance through a semi-extended
barrier or well in the wire. The numerical implementations we resort to in
order to describe the cases of weak and intermediate magnetic field allow us to
produce high resolution maps of the ``near field'' scattering wave functions,
which are used to shed light on the underlying scattering processes.Comment: RevTeX, 13 pages with included postscript figures, high resolution
version available at http://hartree.raunvis.hi.is/~vidar/Rann/VG_04.pd
Androgenic ability and plant regeneration potential in some tomato varieties
Aiming to evaluate the in vitro regeneration potential, five varieties of tomatoes (Solanum lycopersicum) were studied for their response in anther culture. Anther explants at an early stage of microspore development were inoculated onto 3 culture media. The first differentiation processes were recorded during the first three weeks of culture, in darkness. The statistical analysis of the data recorded during the anther culture showed significant differences between genotypes regarding their specific response to culture conditions and the significant influence of the initiation medium composition in triggering the differentiation processes. Under the tested conditions were induced: the embryogenic potential in 3 genotypes (ʻȘtefănești 22ʼ, ʻCostate 21ʼ and ʻChihlimbarʼ) and the indirect organogenesis in 2 genotypes (ʻArgeș 20ʼ and ʻCostate 21ʼ). Morphological characteristics of anther-derived plants from ʻArgeș 20ʼ variety, grown in greenhouse conditions (growth rate, features of leaf, flower and fruit), as well as analyses with nine SSR markers (banding patterns, the coefficient of genetic similarity and the polymorphism information content) in DNA samples from each regenerant and the donor variety, provided clear evidence of the occurrence of spontaneous genetic variation during in vitro anther culture, and of the existence of somaclonal variation in regenerated plants. The amplified products obtained with SSR primers revealed a total number of scorable bands of 160 and a mean percentage of polymorphic bands of 21.09 %. Two out the nine tested primers, SSR63 and SLM6-7 proved to be efficient in detecting genetic differences not only among regenerants, but also between them and the donor genotype
Why and How to Benchmark XML Databases
Benchmarks belong to the very standard repertory of tools deployed in database development. Assessing the capabilities of a system, analyzing actual and potential bottlenecks, and, naturally, comparing the pros and cons of different systems architectures have become indispensable tasks as databases management systems grow in complexity and capacity. In the course of the development of XML databases the need for a benchmark framework has become more and more evident: a great many different ways to store XML data have been suggested in the past, each with its genuine advantages, disadvantages and consequences that propagate through the layers of a complex database system and need to be carefully considered. The different storage schemes render the query characteristics of the data variably different. However, no conclusive methodology for assessing these differences is available to date.
In this paper, we outline desiderata for a benchmark for XML databases drawing from our own experience of developing an XML repository, involvement in the definition of the standard query language, and experience with standard benchmarks for relational databases
Geometrical effects and signal delay in time-dependent transport at the nanoscale
The nonstationary and steady-state transport through a mesoscopic sample
connected to particle reservoirs via time-dependent barriers is investigated
within the reduced density operator method. The generalized Master equation is
solved via the Crank-Nicolson algorithm by taking into account the memory
kernel which embodies the non-Markovian effects that are commonly disregarded.
We propose a physically reasonable model for the lead-sample coupling which
takes into account the match between the energy of the incident electrons and
the levels of the isolated sample, as well as their overlap at the contacts.
Using a tight-binding description of the system we investigate the effects
induced in the transient current by the spectral structure of the sample and by
the localization properties of its eigenfunctions. In strong magnetic fields
the transient currents propagate along edge states. The behavior of populations
and coherences is discussed, as well as their connection to the tunneling
processes that are relevant for transport.Comment: 26 pages, 13 figures. To appear in New Journal of Physic
- …