806 research outputs found

    Ten more years of discovery: revisiting the quality of the sauropodomorph dinosaur fossil record

    Get PDF
    Spatiotemporal changes in fossil specimen completeness can bias our understanding of a group's evolutionary history. The quality of the sauropodomorph fossil record was assessed a decade ago, but the number of valid species has since increased by 60%, and 17% of the taxa from that study have since undergone taxonomic revision. Here, we assess how 10 years of additional research has changed our outlook on the group's fossil record. We quantified the completeness of all 307 sauropodomorph species currently considered valid using the skeletal completeness metric, which calculates the proportion of a complete skeleton preserved for each taxon. Taxonomic and stratigraphic age revisions, rather than new species, are the drivers of the most significant differences between the current results and those of the previous assessment. No statistical differences appeared when we use our new dataset to generate temporal completeness curves based solely on taxa known in 2009 or 1999. We now observe a severe drop in mean completeness values across the Jurassic–Cretaceous boundary that never recovers to pre‐Cretaceous levels. Explaining this pattern is difficult, as we find no convincing evidence that it is related to environmental preferences or body size changes. Instead, it might result from: (1) reduction of terrestrial fossil preservation space due to sea level rise; (2) ecological specificities and relatively high diagnosability of Cretaceous species; and/or (3) increased sampling of newly explored sites with many previously unknown taxa. Revisiting patterns in this manner allows us to test the longevity of conclusions made in previous quantitative studies

    Intergenerational Education: The significance of 'reciprocity' and 'place'

    Get PDF
    In this article, the case is made for greater clarity in the definition of intergenerational practice and intergenerational education. Theoretically, the effects of all-age reciprocity and the significance of attending to 'place' are explored. Taken together, they help point to what is distinctive about the scope and purpose of intergenerational education. The author argues that any intergenerational practice must always involve an educative element that is focused, at least in part, on the on-going reciprocal production of new relations between generations through the way challenges are purposefully responded to in some specific place

    Second specimen of the Late Cretaceous sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on skull and neck evolution in early titanosaurs and the biogeographic origins of Australian dinosaur faunas

    Get PDF
    The titanosaurian sauropod dinosaur Diamantinasaurus matildae is represented by two individuals from the Cenomanian–lower Turonian ‘upper’ Winton Formation of central Queensland, north-eastern Australia. The type specimen has been described in detail, whereas the referred specimen, which includes several elements not present in the type series (partial skull, atlas, axis and postaxial cervical vertebrae), has only been described briefly. Herein, we provide a comprehensive description of this referred specimen, including a thorough assessment of the external and internal anatomy of the braincase, and identify several new autapomorphies of D. matildae. Via an expanded data matrix consisting of 125 taxa scored for 552 characters, we recover a close, well-supported relationship between Diamantinasaurus and its contemporary, Savannasaurus elliottorum. Unlike previous iterations of this data matrix, under a parsimony framework we consistently recover Diamantinasaurus and Savannasaurus as early-diverging members of Titanosauria using both equal weighting and extended implied weighting, with the overall topology largely consistent between analyses. We erect a new clade, named Diamantinasauria herein, that also includes the contemporaneous Sarmientosaurus musacchioi from southern Argentina, which shares several cranial features with the referred Diamantinasaurus specimen. Thus, Diamantinasauria is represented in the mid-Cretaceous of both South America and Australia, supporting the hypothesis that some titanosaurians, in addition to megaraptoran theropods and possibly some ornithopods, were able to disperse between these two continents via Antarctica. Conversely, there is no evidence for rebbachisaurids in Australia, which might indicate that they were unable to expand into high latitudes before their extinction in the Cenomanian–Turonian. Likewise, there is no evidence for titanosaurs with procoelous caudal vertebrae in the mid-Cretaceous Australian record, despite scarce but compelling evidence for their presence in both Antarctica and New Zealand during the Campanian–Maastrichtian. These later titanosaurs presumably dispersed into these landmasses from South America before the Campanian (~85 Mya), when seafloor spreading between Zealandia and Australia commenced. Although Australian mid-Cretaceous dinosaur faunas appear to be cosmopolitan at higher taxonomic levels, closer affinities with South America at finer scales are becoming better supported for sauropods, theropods and ornithopods

    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction

    Get PDF
    The Cretaceous/Paleogene mass extinction, 66 Ma, included the demise of non-avian dinosaurs. Intense debate has focused on the relative roles of Deccan volcanism and the Chicxulub asteroid impact as kill mechanisms for this event. Here, we combine fossil-occurrence data with paleoclimate and habitat suitability models to evaluate dinosaur habitability in the wake of various asteroid impact and Deccan volcanism scenarios. Asteroid impact models generate a prolonged cold winter that suppresses potential global dinosaur habitats. Conversely, long-term forcing from Deccan volcanism (carbon dioxide [CO2]-induced warming) leads to increased habitat suitability. Short-term (aerosol cooling) volcanism still allows equatorial habitability. These results support the asteroid impact as the main driver of the non-avian dinosaur extinction. By contrast, induced warming from volcanism mitigated the most extreme effects of asteroid impact, potentially reducing the extinction severity

    Possibilities for pedagogy in Further Education: Harnessing the abundance of literacy

    Get PDF
    In this report, it is argued that the most salient factor in the contemporary communicative landscape is the sheer abundance and diversity of possibilities for literacy, and that the extent and nature of students' communicative resources is a central issue in education. The text outlines the conceptual underpinnings of the Literacies for Learning in Further Education project in a social view of literacy, and the associated research design, methodology and analytical framework. It elaborates on the notion of the abundance of literacies in students' everyday lives, and on the potential for harnessing these as resources for the enhancement of learning. It provides case studies of changes in practice that have been undertaken by further education staff in order to draw upon students' everyday literacy practices on Travel and Tourism and Multimedia courses. It ends with some of the broad implications for conceptualising learning that arise from researching through the lens of literacy practices

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    Shifts in food webs and niche stability shaped survivorship and extinction at the end-Cretaceous

    Get PDF
    It has long been debated why groups such as non-avian dinosaurs became extinct whereas mammals and other lineages survived the Cretaceous/Paleogene mass extinction 66 million years ago. We used Markov networks, ecological niche partitioning, and Earth System models to reconstruct North American food webs and simulate ecospace occupancy before and after the extinction event. We find a shift in latest Cretaceous dinosaur faunas, as medium-sized species counterbalanced a loss of megaherbivores, but dinosaur niches were otherwise stable and static, potentially contributing to their demise. Smaller vertebrates, including mammals, followed a consistent trajectory of increasing trophic impact and relaxation of niche limits beginning in the latest Cretaceous and continuing after the mass extinction. Mammals did not simply proliferate after the extinction event; rather, their earlier ecological diversification might have helped them survive
    • 

    corecore