808 research outputs found

    Chemical equilibrium study at SPS 158A GeV

    Full text link
    A detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energy 158A GeV is presented. By analyzing hadronic multiplicities within the statistical hadronization approach, the chemical equilibration of p-p, C-C, Si-Si and Pb-Pb systems is studied as a function of the number of participating nucleons in the system. Additionally, Two Component statistical hadronization model is applied to the data and is found to be able to explain the observed strangeness hadronic phase space under-saturation.Comment: 4 pages, 3 figures to appear in the proceedings of the ''Strangeness in Quark Matter 2004'' conferenc

    Composite fermions from the algebraic point of view

    Full text link
    Composite fermion wavefuctions have been used to describe electrons in a strong magnetic field. We show that the polynomial part of these wavefunctions can be obtained by applying a normal ordered product of suitably defined annihilation and creation operators to an even power of the Vandermonde determinant, which can been considered as a kind of a non-trivial Fermi sea. In the case of the harmonic interaction we solve the system exactly in the lowest Landau level. The solution makes explicit the boson-fermion correspondence proposed recently.Comment: 11 pages 1 figur

    Long hold times in a two-junction electron trap

    Get PDF
    The hold time τ\tau of a single-electron trap is shown to increase significantly due to suppression of environmentally assisted tunneling events. Using two rf-tight radiation shields instead of a single one, we demonstrate increase of τ\tau by a factor exceeding 10310^3, up to about 10 hours, for a trap with only two superconductor (S) -- normal-metal (N) tunnel junctions and an on-chip resistor RR (R-SNS structure). In the normal state, the improved shielding made it possible to observe τ\tau\sim 100 s, which is in reasonable agreement with the quantum-leakage-limited level expected for the two-electron cotunneling process.Comment: 4 pages, 3 figure

    Analysis of dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach

    Get PDF
    We address dilepton production in Au+Au collisions at sqrt(s_NN)=200 GeV by employing the parton-hadron-string dynamics (PHSD) off-shell transport approach. Within the PHSD one goes beyond the quasiparticle approximation by solving generalized transport equations on the basis of the off-shell Kadanoff-Baym equations for the Green's functions in the phase-space representation. The approach consistently describes the full evolution of a relativistic heavy-ion collision from the initial hard scatterings and string formation through the dynamical deconfinement phase transition to the quark-gluon plasma (QGP) as well as hadronization and to the subsequent interactions in the hadronic phase. {With partons described in the PHSD by the dynamical quasiparticle model (DQPM) - matched to reproduce lattice QCD results in thermodynamic equilibrium} - we calculate, in particular, the dilepton radiation from partonic interactions through the reactions q+qbar->gamma^*, q+qbar->gamma^*+g and q+g->gamma^*+q (qbar+g->gamma^*+qbar) in the early stage of relativistic heavy-ion collisions. By comparing our results to the data from the PHENIX Collaboration, we study the relative importance of different dilepton production mechanisms and point out the regions in phase space where partonic channels are dominant. Furthermore, explicit predictions are presented for dileptons within the acceptance of the STAR detector system and compared to the preliminary data.Comment: 11 pages, 10 figures. arXiv admin note: substantial text overlap with arXiv:1107.340

    Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes

    Full text link
    Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes with different symmetries and calculate the heat conductivity κ\kappa. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cut-off for the phonons frequencies, which leads to the temperature dependence κT(a+blnT)\kappa\propto T(a+b\ln T). This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature.Comment: 9 pages, 2 figure

    FAPP2 is involved in the transport of apical cargo in polarized MDCK cells

    Get PDF
    Phosphatidylinositol-4-phosphate (PI(4)P) is the main phosphoinositide in the Golgi complex and has been reported to play a pleiotropic role in transport of cargo from the trans-Golgi network to the plasma membrane (PM) in polarized Madin–Darby canine kidney (MDCK) cells. Overexpression of the chimeric fluorescent protein encoding the pleckstrin homology domain, which is specific for PI(4)P, inhibited both apical and basolateral transport pathways. The transport of apical cargo from the Golgi was shown to be specifically decreased by adenovirus-mediated RNA interference directed against PI(4)P adaptor protein (FAPP) 2. FAPP1 depletion had no effect on transport. On the other hand, FAPP2 was not involved in the Golgi-to-PM transport of cargo that was targeted to the basolateral membrane domain. Thus, we conclude that FAPP2 plays a specific role in apical transport in MDCK cells

    Heat Capacity of Mesoscopic Superconducting Disks

    Full text link
    We study the heat capacity of isolated giant vortex states, which are good angular momentum (LL) states, in a mesoscopic superconducting disk using the Ginzburg-Landau (GL) theory. At small magnetic fields the LL=0 state qualitatively behaves like the bulk sample characterized by a discontinuity in heat capacity at TcT_c. As the field is increased the discontinuity slowly turns into a continuous change which is a finite size effect. The higher LL states show a continuous change in heat capacity at TcT_c at all fields. We also show that for these higher LL states, the behavior of the peak position with change in field is related to the paramagnetic Meissner effect (irreversible) and can lead to an unambiguous observation of positive magnetization in mesoscopic superconductors.Comment: Final versio

    Proximity Induced Josephson-Quasiparticle Process in a Single Electron Transistor

    Full text link
    We have performed the first experiments in a superconductor - normal metal - superconductor single electron transistor in which there is an extra superconducting strip partially overlapping the normal metal island in good metal-to-metal contact. Superconducting proximity effect gives rise to current peaks at voltages below the quasiparticle threshold. We interpret these peaks in terms of the Josephson-quasiparticle process and discuss their connection with the proximity induced energy gap in the normal metal island.Comment: 4 pages + 4 figure
    corecore