26 research outputs found
Filaments in the OMC-3 cloud and uncertainties in estimates of filament profiles
Filaments are an important part of star-forming interstellar clouds. Theie
properties hold clues to their formation mechanisms and role in the
star-formation process. We compare the properties of filaments in the Orion
Molecular Cloud 3 (OMC-3), as seen in mid-infrared (MIR) absorption and
far-infrared (FIR) dust emission. We calculated optical depth maps of the OMC-3
filaments based on the MIR absorption seen in Spitzer data and FIR dust
emission observed with Herschel and the ArT\'eMiS instrument. The widths of the
selected OMC-3 filament segments are in the range 0.03-0.1 pc, with similar
average values seen in both MIR and FIR analyses. Compared to the widths, the
individual parameters of the fitted Plummer functions are much more uncertain.
The asymptotic power-law index has typically values p~3 but with a large
scatter. Modelling shows that the FIR observations can systematically
overestimate the filament widths. The effect is potentially tens of per cent at
column densities above N(H) ~ cm but is reduced in more
intense radiation fields, such as the Orion region. Spatial variations in dust
properties could cause errors of similar magnitude. In the MIR analysis, dust
scattering should generally not be a significant factor, unless there are
high-mass stars nearby or the dust MIR scattering efficiency is higher than in
the tested dust models. Thermal MIR dust emission can be a more significant
source of error, especially close to embedded sources. The analysis of
interstellar filaments can be affected by several sources of systematic error,
but mainly at high column densities and, in the case of FIR observations, in
weak radiation fields. The widths of the OMC-3 filaments were consistent
between the MIR and FIR analyses and did not reveal systematic dependence on
the angular resolution of the observations.Comment: 22 pages, accepted to A&
Synthetic Next Generation Very Large Array line observations of a massive star-forming cloud
Context. Studies of the interstellar medium and the pre-stellar cloud evolution require spectral line observations that have a high sensitivity and high angular and velocity resolution. Regions of high-mass star formation are particularly challenging because of line-of-sight confusion, inhomogeneous physical conditions, and potentially very high optical depths.Aims. We wish to quantify to what accuracy the physical conditions within a massive star-forming cloud can be determined from observations. We are particularly interested in the possibilities offered by the Next Generation Very Large Array (ngVLA) interferometer.Methods. We used data from a magnetohydrodynamic simulation of star formation in a high-density environment. We concentrated on the study of a filamentary structure that has physical properties similar to a small infrared-dark cloud. We produced synthetic observations for spectral lines observable with the ngVLA and analysed these to measure column density, gas temperature, and kinematics. Results were compared to ideal line observations and the actual 3D model.Results. For a nominal cloud distance of 4kpc, ngVLA provides a resolution of similar to 0.01 pc even in its most compact configuration. For abundant molecules, such as HCO+, NH3, N2H+, and CO isotopomers, cloud kinematics and structure can be mapped down to subarcsecond scales in just a few hours. For NH3, a reliable column density map could be obtained for the entire 15 '' x 40 '' cloud, even without the help of additional single-dish data, and kinetic temperatures are recovered to a precision of similar to 1 K. At higher frequencies, the loss of large-scale emission becomes noticeable. The line observations are seen to accurately trace the cloud kinematics, except for the largest scales, where some artefacts appear due to the filtering of low spatial frequencies. The line-of-sight confusion complicates the interpretation of the kinematics, and the usefulness of collapse indicators based on the expected blue asymmetry of optically thick lines is limited.Conclusions. The ngVLA will be able to provide accurate data on the small-scale structure and the physical and chemical state of star-forming clouds, even in high-mass star-forming regions at kiloparsec distances. Complementary single-dish data are still essential for estimates of the total column density and the large-scale kinematics.Peer reviewe
Characterization of dense Planck clumps observed with Herschel and SCUBA-2
Context. Although the basic processes of star formation (SF) are known, more research is needed on SF across multiple scales and environments. The Planck all-sky survey provided a large catalog of Galactic cold clouds and clumps that have been the target of several follow-up surveys. Aims. We aim to characterize a diverse selection of dense, potentially star-forming cores, clumps, and clouds within the Milky Way in terms of their dust emission and SF activity. Methods. We studied 53 fields that have been observed in the JCMT SCUBA-2 continuum survey SCOPE and have been mapped with Herschel. We estimated dust properties by fitting Herschel observations with modified blackbody functions, studied the relationship between dust temperature and dust opacity spectral index beta, and estimated column densities. We extracted clumps from the SCUBA-2 850 mu m maps with the FellWalker algorithm and examined their masses and sizes. Clumps are associated with young stellar objects found in several catalogs. We estimated the gravitational stability of the clumps with virial analysis. The clumps are categorized as unbound starless, prestellar, or protostellar. Results. We find 529 dense clumps, typically with high column densities from (0.3-4.8) x 10(22) cm(-2), with a mean of (1.5 +/- 0.04) x10(22) cm(-2), low temperatures (T similar to 10-20 K), and estimated submillimeter beta = 1.7 +/- 0.1. We detect a slight increase in opacity spectral index toward millimeter wavelengths. Masses of the sources range from 0.04 M-circle dot to 4259 M-circle dot. Mass, linear size, and temperature are correlated with distance. Furthermore, the estimated gravitational stability is dependent on distance, and more distant clumps appear more virially bound. Finally, we present a catalog of properties of the clumps. Conclusions. Our sources present a large array of SF regions, from high-latitude, nearby diffuse clouds to large SF complexes near the Galactic center. Analysis of these regions will continue with the addition of molecular line data, which will allow us to study the densest regions of the clumps in more detail.Peer reviewe
Recommended from our members
A study of galactic plane Planck galactic cold clumps observed by SCOPE and the JCMT plane survey
We have investigated the physical properties of Planck Galactic Cold Clumps (PGCCs) located in the Galactic Plane, using the JCMT Plane Survey (JPS) and the SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE) survey. By utilising a suite of molecular-line surveys, velocities and distances were assigned to the compact sources within the PGCCs, placing them in a Galactic context. The properties of these compact sources show no large-scale variations with Galactic environment. Investigating the star-forming content of the sample, we find that the luminosity-to-mass ratio (L/M) is an order of magnitude lower than in other Galactic studies, indicating that these objects are hosting lower levels of star formation. Finally, by comparing ATLASGAL sources that are associated or are not associated with PGCCs, we find that those associated with PGCCs are typically colder, denser, and have a lower L/M ratio, hinting that PGCCs are a distinct population of Galactic Plane sources
Synthetic Next Generation Very Large Array line observations of a massive star-forming cloud
Context. Studies of the interstellar medium and the pre-stellar cloud evolution require spectral line observations that have a high sensitivity and high angular and velocity resolution. Regions of high-mass star formation are particularly challenging because of line-of-sight confusion, inhomogeneous physical conditions, and potentially very high optical depths.
Aims. We wish to quantify to what accuracy the physical conditions within a massive star-forming cloud can be determined from observations. We are particularly interested in the possibilities offered by the Next Generation Very Large Array (ngVLA) interferometer.
Methods. We used data from a magnetohydrodynamic simulation of star formation in a high-density environment. We concentrated on the study of a filamentary structure that has physical properties similar to a small infrared-dark cloud. We produced synthetic observations for spectral lines observable with the ngVLA and analysed these to measure column density, gas temperature, and kinematics. Results were compared to ideal line observations and the actual 3D model.
Results. For a nominal cloud distance of 4kpc, ngVLA provides a resolution of ~0.01 pc even in its most compact configuration. For abundant molecules, such as HCO+, NH3, N2H+, and CO isotopomers, cloud kinematics and structure can be mapped down to subarcsecond scales in just a few hours. For NH3, a reliable column density map could be obtained for the entire 15″ × 40″ cloud, even without the help of additional single-dish data, and kinetic temperatures are recovered to a precision of ~1 K. At higher frequencies, the loss of large-scale emission becomes noticeable. The line observations are seen to accurately trace the cloud kinematics, except for the largest scales, where some artefacts appear due to the filtering of low spatial frequencies. The line-of-sight confusion complicates the interpretation of the kinematics, and the usefulness of collapse indicators based on the expected blue asymmetry of optically thick lines is limited.
Conclusions. The ngVLA will be able to provide accurate data on the small-scale structure and the physical and chemical state of star-forming clouds, even in high-mass star-forming regions at kiloparsec distances. Complementary single-dish data are still essential for estimates of the total column density and the large-scale kinematics