118 research outputs found

    Non-destructive Investigation of “The Violinist” a Lead Sculpture by Pablo Gargallo, Using the Neutron Imaging Facility NEUTRA in the Paul Scherrer Institute

    Get PDF
    AbstractThe Violinist (1920), the only sculpture made by Gargallo using lead sheet and wood, is being corroded by carbonation, most probably due to the organic vapours released by the wood inside, a material not chemically compatible with lead. Hydrogen plasma has been tested and proved to be an effective treatment meaning that the sculpture has to be dismantled in order to give the plasma gas access to the lead carbonate crusts on the inner surface of the lead sheet. Prior to dismantling, a complete exploration and diagnosis of this lead sculpture has been carried out through neutron imaging at the Paul Scherrer Institute. This non-destructive technique has produced different sets of images including radiography, tomography and 3D reconstruction. Despite the presence of a core made of an organic material such as wood, the digital processing of the images and their in depth visual analysis have yielded new three-dimensional information of inaccessible details of the sculpture, allowing us to assess its present state of conservation and the manufacturing technique and materials used by the artist. The results presented in this article highlight how information from neutron imaging can be of great value when it comes to set the strategies for future conservation treatmen

    Neutron attenuation coefficients for non-invasive quantification of wood properties

    Get PDF
    Attenuation coefficients and mass attenuation coefficients of wood were determined theoretically and experimentally for thermal and cold neutrons. Experiments were carried out at the neutron imaging facilities at the Paul Scherrer Institute, Villigen (CH). For the calculation of theoretical attenuation coefficients, only the three main elemental components (carbon, oxygen and hydrogen) were taken into consideration. While hydrogen accounts only for 6% (by wt) of wood, over 90% of the attenuation can be attributed to this element. Nitrogen and other trace elements were estimated to have a negligible impact on the theoretical attenuation coefficient. For the experimental determination of the attenuation coefficients, samples from different European and tropical wood species were tested in order to examine the influence of density and extractives content. Experimental results show a very strong linear correlation between attenuation coefficient and wood density irrespective of the tested species and extractives content that play only a minor role. As neutrons are very susceptible to scattering, it is necessary to apply a scattering correction if a quantitative evaluation is intende

    Neutron imaging versus standard X-ray densitometry as method to measure tree-ring wood density

    Get PDF
    Neutron imaging is a new non-destructive testing method in wood science. It is similar to X-ray methods but with differing sensitivities for different elements. In this study, neutron imaging was used to ascertain the density profiles of thin spruce samples and compared with results generated with standard X-ray microdensitometry. Data obtained through neutron imaging were similar to those resulting from the X-ray method. The advantage of neutron imaging is its higher sensitivity to some elements such as hydrogen. Together with the high neutron-sensitivity of the applied detectors (imaging plates) this makes shorter exposure times possible, and yields more detailed information on the inner composition of wood. X-ray film, which is still most commonly used in X-ray densitometry, has the disadvantage that the relationship between the optical density of the film and the density of wood is non-linear. This means that corrections and calibration with step wedges are necessary, whereas with neutron imaging the digital values can be used directly to calculate the density at a certain point of the specimen. Thus neutron imaging appears to be an appropriate method, which can be used as complement to established X-ray methods for fast and straightforward investigations of tree rings, growth zones and wood densit

    Combination of neutron imaging (NI) and digital image correlation (DIC) to determine intra-ring moisture variation in Norway spruce

    Get PDF
    The hygroscopic behavior of wood has a strong influence on its mechanical performance, yet the moisture gradients within the growth ring structure have not been sufficiently investigated. The main challenge is that moisture variations are coupled with strong sample deformation, which complicates the spatial referencing of moist and dry states. In this work, neutron imaging (NI) for the detection of water and digital image correlation (DIC) for the detection of local deformation were combined to calculate the local gravimetric moisture content (MCgrav) and the volumetric moisture content (MCvol) within single growth rings. Specimens of Norway spruce [Picea abies (L.) Karst.] were exposed to an adsorption-desorption cycle, with relative humidity (RH) steps varying from 0% (oven dry) up to 95% RH. After each acclimatization step, neutron transmission and DIC images were acquired. The local deformations determined by DIC were used to assign the corresponding dry density in the undeformed state to the compartment in a moist state and thus to calculate its MC by NI. No significant MC gradients could be found between earlywood (EW) and latewood (LW) within ±0.5% accuracy. However, strong density gradients between EW and LW can be directly correlated with MCvol. It appears that the MC in the cell wall is constant regardless of the particular growth ring positio

    Non-destructive determination and quantification of diffusion processes in wood by means of neutron imaging

    Get PDF
    Diffusion processes in samples of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies [L.] Karst.) were determined and quantified by means of neutron imaging (NI). The experiments were carried out at the neutron imaging facility NEUTRA at the Paul Scherrer Institute in Villigen (Switzerland) using a thermal neutron spectrum. NI is a non-destructive and non-invasive testing method with a very high sensitivity for hydrogen and thus water. Within the scope of this study, diffusion processes in the longitudinal direction were ascertained for solid wood samples exposed to a differentiating climate (dry side/wet side). With NI it was possible to determine the local distribution and consequently the total amount of water absorbed by the samples. The calculated values scarcely differ from those ascertained by weighing (≤3%). The method yields profiles of the water content over the whole sample, thus allowing the local and temporal resolution of diffusion processes within the sample in the main transport direction (longitudinal). On the basis of these profiles, it was possible to calculate the diffusion coefficients along the fibre direction according to Fick's second la

    Application areas of synchrotron radiation tomographic microscopy for wood research

    Get PDF
    Possible applications for synchrotron radiation tomographic microscopy in the field of wood research were tested and evaluated at the TOMCAT beamline (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Swiss Light Source (SLS) at the Paul Scherrer Institute (Villigen, Switzerland). For this study, small cylindrical samples (∅ 1 and 3mm) were examined with different experimental setups resulting in a nominal voxel size of approximately 1.48×1.48×1.48 and 3.7×3.7×3.7μm3, respectively. Suitability of the TOMCAT microscope for 3D investigations of wood anatomy was tested on several softwood and hardwood species revealing microscopic features (e.g. tyloses, wall thickenings or pits) down to the nominal pixel size. The results suggest that even features in the sub-voxel range can be made visible. Tomographic microscopy was also tested for wood technological applications, i.e. penetration behaviour of a wood preservative and also of three wood adhesives (poly-urethane resins) with different viscosities. Although the experiments with the preservative yielded no clear results, the method seems suitable for examining the penetration of the different adhesives. The adhesive penetrates the wood mainly by the vessels where it can be easily discerned from the wood structur

    Combination of X-ray and digital image correlation for the analysis of moisture-induced strain in wood: opportunities and challenges

    Get PDF
    In this present study, the moisture-induced deformation behaviour of a spruce sample was analysed one- and two-dimensionally with high resolution on the radial-tangential surface. For this purpose, an artificial speckle pattern was applied to the surface which was then recorded by a CCD camera during the deformation. The generated TIF images were analysed with a strain mapping software (VIC 2D) that computed the two-dimensional strain field from the surface deformation. Selected options to evaluate two-dimensional data generated with X-ray imaging and digital image correlation are presented. Combining and correlating these techniques enables detailed analysis of structure-function relationships during swelling (and shrinkage) processes in wood. However, several issues still have to be solved to enhance effectiveness and user-friendliness of such investigations, as elucidated in detail in this pape

    Quantitative determination of bound water diffusion in multilayer boards by means of neutron imaging

    Get PDF
    Diffusion processes into multilayered samples of Norway spruce (Picea abies [L.] Karst.) exposed to a differentiating climate (dry side/wet side) were determined and quantified by means of neutron imaging (NI). The experiments were carried out at the neutron imaging facility NEUTRA at the Paul Scherrer Institute (PSI) in Villigen (Switzerland). With NI the influence of different adhesives (polyvinyl acetate (PVAc), urea formaldehyde resin (UF), epoxy resin (EP), one-component polyurethane (1C PUR)) on the diffusion process could be determined by varying the layer number and the thickness of adhesive joints of the samples. Thereby, neutron transmission images were used to measure time dependent water profiles in the diffusion direction. Using Fick's second law, diffusion coefficients for radial and tangential water transport in spruce wood and in the adhesive joints were calculated depending on moisture content (MC). It was found that the diffusion coefficients of the adhesives (1C PUR, EP at high MC) were up to three orders of magnitude lower than those of spruce wood. PVAc and UF had a smaller barrier effect compared to wood, which in contrast to 1C PUR and EP, clearly depends on the M
    corecore