7 research outputs found

    Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart

    No full text
    ABSTRACTIn adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed

    A role for chromatin topology in imprinted domain regulation

    No full text
    Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically-associated domains, lamin-associated domains, nucleolar-associated domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Why we should not select the faster embryo: lessons from mice and cattle

    No full text
    Many studies have shown that in vitro culture can negatively impact preimplantation development. This necessitates some selection criteria for identifying the best-suited embryos for transfer. That said, embryo selection after in vitro culture remains a subjective process in most mammalian species, including cows, mice and humans. General consensus in the field is that embryos that develop in a timely manner have the highest developmental competence and viability after transfer. Herein lies the key question: what is a timely manner? With emerging data in bovine and mouse supporting increased developmental competency in embryos with moderate rates of development, it is time to question whether the fastest developing embryos are the best embryos for transfer in the human clinic. This is especially relevant to epigenetic gene regulation, including genomic imprinting, where faster developing embryos exhibit loss of imprinted methylation, as well as to sex selection bias, where faster developmental rates of male embryos may lead to biased embryo transfer and, in turn, biased sex ratios. In this review, we explore evidence surrounding the question of developmental timing as it relates to bovine embryo quality, mouse embryo quality and genomic imprint maintenance, and embryo sex

    INVESTIGATING THE MOLECULAR AND DEVELOPMENTAL EFFECTS OF VARIOUS CULTURE REGIMES IN A MOUSE MODEL SYSTEM

    No full text
    Background/Purpose: Genomic imprinting is a specialized transcriptional mechanism that results in the unequal expression of alleles based on their parent-of-origin [1]. Many imprinted genes are critical for proper embryonic and fetaldevelopment [2] and disruption of genomic imprinting are associated with many development disorders [3]. Recently, increased frequencies of imprinting disorders have been correlated with the use of assisted reproductive technologies (ARTs)[2]. Rigorous and thorough testing of ARTs is required to determine their influence on genomic imprinting and development. I hypothesize that imprinting maintenance mechanisms are disrupted during early mouse development by the environmental insult of culture media used in human ARTs, and that loss of imprinting correlates with delayed embryonic development. Methods: The specific aims of my project are to develop a method to evaluate the methylation and expression patterns of 4 known imprinted genes in individual blastocysts. Results: We have successfully developed a novel method to evaluate both imprinted methylation and expression from a single mouse blastocyst. This method has been tested and results compared to methods used to evaluate imprinted methylation and expression separately; we have determined that results obtained with a combined protocol are equivalent to either alone. I will use this method to evaluate relationships between development rates in culture andgenomic imprinting, as well as the effects of various culture media used formouse and human embryo culture on genomic imprinting. Conclusion: This analysis allow for a more comprehensive study ofthe effects of environmental insult on genomic imprinting and preimplantation embryo development. References: 1. Reik W, Walter J. Genomic imprinting:parental influence on the genome. Nat Rev Genet 2001;2:21-32. 2. Rodenhiser D, Mann M. Epigenetics andhuman disease: translating basic biology into clinical applications. CMAJ. 2006;174:341-8. 3.Paoloni-Giacobino A. Epigenetics in reproductive medicine. Pediatr Res 2007;61:51R-57R

    Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes

    No full text
    Growth and maturation of healthy oocytes within follicles requires bidirectional signaling and intercellular gap junctional communication. Aberrant endocrine signaling and loss of gap junctional communication between the oocyte and granulosa cells leads to compromised folliculogenesis, oocyte maturation and oocyte competency, consequently impairing fertility. Given that oocyte-specific DNA methylation establishment at imprinted genes occurs during this growth phase, we determined whether compromised endocrine signaling and gap junctional communication would disrupt de novo methylation acquisition using ERβ and connexin37 genetic models. To compare mutant oocytes to control oocytes, DNA methylation acquisition was first examined in individual, 20-80 μm control oocytes at three imprinted genes, Snrpn, Peg3 and Peg1. We observed that each gene has its own size-dependent acquisition kinetics, similar to previous studies. To determine whether compromised endocrine signaling and gap junctional communication disrupted de novo methylation acquisition, individual oocytes from Esr2- and Gja4-deficient mice were also assessed for DNA methylation establishment. We observed no aberrant or delayed acquisition of DNA methylation at Snrpn, Peg3 or Peg1 in oocytes from Ers2-deficient females, and no perturbation in Snrpn or Peg3 de novo methylation in oocytes from Gja4-null females. However, Gja4-deficiency resulted in a loss or delay in methylation acquisition at Peg1. One explanation for this difference between the three loci analyzed is the late establishment of DNA methylation at the Peg1 gene. These results indicate that compromised fertility though impaired intercellular communication can lead to imprinting acquisition errors. Further studies are required to determine the effects of subfertility/infertility originating from impaired signaling and intercellular communication during oogenesis on imprint maintenance during preimplantation development
    corecore