2,563 research outputs found
Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor
This report presents the results of force tests on and air-flow surveys near PCA-2 autogiro rotor in the NACA full-scale wind tunnel. The force tests were made at three pitch settings and several rotor speeds; the effect of fairing protuberances on the rotor blade was determined. Induced downwash and yaw angles were determined at low tip-speed ratios in a plane 1 1/2 feet above the path of the blade tips. The results show that the maximum l/d of the rotor cannot be appreciably increased by increasing the blade pitch angle above about 4.5 degrees at the blade tip; that the protuberances on the blades cause more than 5 percent of the total rotor drag; and that the rotor center-of-pressure travel is very small
Microstructural strain energy of α-uranium determined by calorimetry and neutron diffractometry
The microstructural contribution to the heat capacity of α-uranium was determined by measuring the heat-capacity difference between polycrystalline and single-crystal samples from 77 to 320 K. When cooled to 77 K and then heated to about 280 K, the uranium microstructure released (3±1) J/mol of strain energy. On further heating to 300 K, the microstructure absorbed energy as it began to redevelop microstrains. Anisotropic strain-broadening parameters were extracted from neutron-diffraction measurements on polycrystals. Combining the strain-broadening parameters with anisotropic elastic constants from the literature, the microstructural strain energy is predicted in the two limiting cases of statistically isotropic stress and statistically isotropic strain. The result calculated in the limit of statistically isotropic stress was (3.7±0.5) J/mol K at 77 K and (1±0.5) J/mol at room temperature. In the limit of statistically isotropic strain, the values were (7.8±0.5) J/mol K at 77 K and (4.5±0.5) J/mol at room temperature. In both cases the changes in the microstructural strain energy showed good agreement with the calorimetry
Large harmonic softening of the phonon density of states of uranium
Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable
In-medium broadening of nucleon resonances
We analyze the effects of an in-medium broadening of nucleon resonances on
the exclusive photoproduction of mesons on nuclei as well as on the total
photoabsorption cross sections in a transport calculation. We show that the
resonance widths observed in semi-inclusive photoproduction on nuclei are
insensitive to an in-medium broadening of nucleon resonances. This is due to a
simple effect: the sizeable width of the nuclear surface and Fermi motion.Comment: 4 pages, 3 figures, minor changes in the tex
Length scale dependence of dynamical heterogeneity in a colloidal fractal gel
We use time-resolved dynamic light scattering to investigate the slow
dynamics of a colloidal gel. The final decay of the average intensity
autocorrelation function is well described by , with and
decreasing from 1.5 to 1 with increasing . We show that the dynamics is not
due to a continuous ballistic process, as proposed in previous works, but
rather to rare, intermittent rearrangements. We quantify the dynamical
fluctuations resulting from intermittency by means of the variance
of the instantaneous autocorrelation function, the analogous of
the dynamical susceptibility studied in glass formers. The amplitude
of is found to grow linearly with . We propose a simple --yet
general-- model of intermittent dynamics that accounts for the dependence
of both the average correlation functions and .Comment: Revised and improved, to appear in Europhys. Let
Facilitation skills: the catalyst for increased effectiveness in consultant practice and clinical systems leadership
Consultant practitioner is the pinnacle of the clinical career ladder for all health care disciplines in the United Kingdom. Consultant nurse, midwife and health visitor roles build on the clinical credibility and expertise characteristic of advanced level practice, but also possess expertise in: clinical systems leadership and the facilitation of culture change, learning and development; advanced consultancy approaches, and research and evaluation to prioritise person-centred, safe and effective care across patient pathways.
This project aimed to help new and emerging consultants to become more effective in their role through a programme of support to develop their expertise.
Emancipatory action research, supported by claims, concerns and issues tool, derived from Stakeholder Evaluation, and other methods (active learning, action learning, collaborative workshops and individual tools e.g. qualitative 360 degree feedback and reflective reviews) comprised the supportive intervention which enabled participants to research their own practice.
The programme’s methodology and methods helped participants to: research their own practice; theorise from practice; grow the facilitation skills needed to develop and demonstrate their own effectiveness; foster the effectiveness of others and; transform practice culture. Greater effectiveness in their multiple roles was demonstrated, as was the impact of this on others, services and organisations.
The study concludes that the support programme augmented by the methodology, facilitation skills and the 10 principles derived from a concept analysis of work-based learning is central to achieving improved effectiveness and transformation of others, services and organisations. Theoretical insights at collective/community levels also resulted. Key recommendations are identified for commissioners, higher education and research
Intrinsic Localized Modes Observed in the High Temperature Vibrational Spectrum of NaI
Inelastic neutron measurements of the high-temperature lattice excitations in
NaI show that in thermal equilibrium at 555 K an intrinsic mode, localized in
three dimensions, occurs at a single frequency near the center of the spectral
phonon gap, polarized along [111]. At higher temperatures the intrinsic
localized mode gains intensity. Higher energy inelastic neutron and x-ray
scattering measurements on a room-temperature NaI crystal indicate that the
creation energy of the ground state of the intrinsic localized mode is 299 meV.Comment: 17 pages, 5 figures Revised version; final versio
- …