8 research outputs found

    Spatiotemporal Changes in Rural Settlement Land and Rural Population in the Middle Basin of the Heihe River, China

    No full text
    Understanding the relationship between the spatiotemporal expansion of rural settlement land and the variation of rural population is the foundation of rational and specific planning for sustainable development. Based on the integration of Landsat TM, ETM+, and OLI images and demographic data, using mathematical models, landscape indexes, and a decoupling model, the spatiotemporal changes of the rural settlement land area and its decoupling relationship with the rural registered population were analyzed for the middle basin of the Heihe River in China. During the period 1986–2014, the following changes occurred: (1) The study area experienced increases of 124.94%, 55.16%, and 1.56% in rural settlement land area, number of patches, and rural registered population, respectively; (2) Edge-expansion, dispersion, and urban encroachment were the dominant patterns of dynamic changes in the studied rural settlement land. Among these, edge-expansion was the most prevalent development pattern; it contributed more than half of the total increase in the number of patches and the total area growth; (3) The annual growth rate of the rural registered population increased from 0.7% in 1986–2002 to −0.5% in 2002–2014. By that time the rural settlement land area had undergone a gentle increase from 3.4% to 3.6%. Generally, the rural registered population and rural settlement land has experienced a shift from weakly decoupled in 1986–2009 to strongly decoupled in 2009–2014; (4) From 1986 to 2014, rural urbanization and modernization were the main causes that led to the decline in the rural registered population; however, economic growth promoted the expansion of rural settlement land during this same period. We believe that with the rapid development of urbanization, the decoupling relationship between the rural settlement land area and the reduction in the rural registered population cannot be completely reversed in the short term. It is recommended that the government should enhance the role of planning rural settlement land during the process of urbanization

    Differential bone remodeling mechanism in hindlimb unloaded and hibernating Daurian ground squirrels: a comparison between artificial and natural disuse within the same species

    No full text
    International audienceLoss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/beta-catenin signaling pathway (GSK-3 beta and phospho-beta-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3 beta was increased, and the protein expression of phospho-beta-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels

    Integrated transcriptomics and metabolomics reveal protective effects on heart of hibernating Daurian ground squirrels

    No full text
    International audienceAbstract Hibernating mammals are natural models of resistance to ischemia, hypoxia‐reperfusion injury, and hypothermia. Daurian ground squirrels ( spermophilus dauricus ) can adapt to endure multiple torpor‐arousal cycles without sustaining cardiac damage. However, the molecular regulatory mechanisms that underlie this adaptive response are not yet fully understood. This study investigates morphological, functional, genetic, and metabolic changes that occur in the heart of ground squirrels in three groups: summer active (SA), late torpor (LT), and interbout arousal (IBA). Morphological and functional changes in the heart were measured using hematoxylin‐eosin (HE) staining, Masson staining, echocardiography, and enzyme‐linked immunosorbent assay (ELISA). Results showed significant changes in cardiac function in the LT group as compared with SA or IBA groups, but no irreversible damage occurred. To understand the molecular mechanisms underlying these phenotypic changes, transcriptomic and metabolomic analyses were conducted to assess differential changes in gene expression and metabolite levels in the three groups of ground squirrels, with a focus on GO and KEGG pathway analysis. Transcriptomic analysis showed that differentially expressed genes were involved in the remodeling of cytoskeletal proteins, reduction in protein synthesis, and downregulation of the ubiquitin‐proteasome pathway during hibernation (including LT and IBA groups), as compared with the SA group. Metabolomic analysis revealed increased free amino acids, activation of the glutathione antioxidant system, altered cardiac fatty acid metabolic preferences, and enhanced pentose phosphate pathway activity during hibernation as compared with the SA group. Combining the transcriptomic and metabolomic data, active mitochondrial oxidative phosphorylation and creatine‐phosphocreatine energy shuttle systems were observed, as well as inhibition of ferroptosis signaling pathways during hibernation as compared with the SA group. In conclusion, these results provide new insights into cardio‐protection in hibernators from the perspective of gene and metabolite changes and deepen our understanding of adaptive cardio‐protection mechanisms in mammalian hibernators
    corecore