11 research outputs found
BIOLOGICAL ACTIVITY SOURCES FROM TRADITIONALLY USEDTRIBE AND HERBAL PLANTS MATERIAL
In the modern era, the consciousness about the cancer disease got enhanced and the research in the treatment of this major disease reached amilestone by spreading its influence into the terrain of the natural herbal plant kingdom to serve the humanity at a great level as 80% of the presentpopulation depends principally on tribe and herbal medicine. In chosen 9 plants of anticancer and biochemical activity such as vinblastine, vincristine,and forskoline, the artemisia connection with this, many modern drugs derive from a natural plant product which acts as chemical stimulators.Minerals and biochemical contents are determined in various traditional plants. Among those traditional plants, we have, Centella asiatica, Euclea,Euphorbia, Foeniculum vulgare, Tulbaghia violacea, from 7 different plant families in our study.Keywords: Anticancer, Antibacterial, Traditional plants, Antitoxicity, Plant extract
Recent Methods for Synthesis of Coumarin Derivatives and Their New Applications
Coumarin (2H-1-benzopyran-2-one) and its heterocyclic derivatives are widely used as lactone scaffolds used by innovative methods for the preparation of heterocyclic molecules. Nowadays, significant biological activities, as well as properties of unique nature coumarin derivatives, have played an important role in the development of novel drugs. This chapter entitles numerous methods of one-pot construction of coumarin derivatives, together with well-known name reactions and other type reactions as well, in the presence of various metal-based homogenous and heterogeneous catalyst system. Coumarin is one of the very important heterocycles and its analogs like natural product and pharmaceutically active drug molecules are extracted/isolated from a plants, animals, and microbes. Coumarin precursors have a wide range of biological activities Hence, the synthesis of coumarins and their heterocyclic analogs have become among the most interesting compound over the last many years in the growth of improved synthetic methodologies to form different types of functional groups that are present in coumarins derivatives. The synthesis of coumarins enabled by current approaches and their most recent bio-applications are discussed in this book chapter. Corresponding complex heterocycles-based coumarin analogs are produced from substituted alkyne substrates and other starting materials as well
Biomedical Applications of Silver Nanoparticles
Nanotechnology is a branch of science and engineering dedicated to materials, having dimensions in the order of nanometer scale and it has been widely used for the development of more efficient technology. Nanoparticles offer many benefits to bulk particles such as increased surface-to-volume ratio, and increased magnetic properties. In recent years, nanotechnology has been embraced by industrial sectors due to its applications in the field of electronic storage systems, biotechnology, magnetic separation and pre concentration of target analytes, targeted drug delivery, and vehicles for gene and drug delivery. Over the yearâs nanomaterials such as nanoparticles, nanoclusters, nanoreods, nanoshells, and nanocages have been continuously used and modified to enable their use as a diagnostic and therapeutic agent in biomedical applications. Thus, In this chapter, introduction to metal nanoparticles, synthesis (Chemical and green synthesis) and biomedical application silver nanoparticles are presented
Silver nanoparticles, synthesized using Hyptis suaveolens (L) poit and their antifungal activity against Candida spp.
Silver nanoparticles (AgNPs), due to their interesting properties and many potential applications have attracted enormous interests in recent years. An attempt has been made in this present study to synthesize AgNPs through biological reduction of silver nitrate, with leaf extract of Hyptis suaveolens (L) Poit serving as a reducing agent. AgNPs formed were characterized with spectral (UV-Vis, XRD, FTIR) and electron microscopic investigations. Dispersed spherical nanosilver particles in the range of 2â
nmâ85â
nm were observed through microscopic analysis and the crystalline nature was evidenced through XRD analyses. Anticandidal activity of biosynthesised AgNPs was evaluated against two Candida albicans strains. The minimum inhibitory concentration (MIC) values for AgNPs against the two clinical strains were 0.27±0.03â
ÎŒg/ml and 0.97±0.13â
ÎŒg/ml. AgNPs were found to be more effective than the amphotericin-B used as control against the strains of the test pathogens. Scanning electron microscopic (SEM) analyses of the Candida cells treated with AgNPs shows change in the surface morphology, suggesting cell wall disruption to be a potential mode of anticandidal activity. Based on our observations, AgNPs synthesized with leaf extract of Hyptis suaveolens could be potentially used in combating candidal infections.Universidade de Vigo/CISU
Green preparation of bract extract (Musa acuminate) doped magnesium oxide nanoparticles and their bioefficacy
Magnesium oxide nanoparticles (MgONPs) synthesized by efficient green approach have unique physiochemical properties. In this study, MgONPs are synthesized with bract extract of
Musa acuminate
, an agro waste. The surface plasmon resonance at 450ânm in UV spectrum and FTIR peaks at 601 and 890âcm
â1
confirmed the presence of MgONPs. XRD pattern revealed high crystallinity of the nanoparticles with an intense orientation peak at 111, and the size was 13ânm. The particles were spherical with an average size of 24.85ânm. The elemental percentage of magnesium and oxygen were 68.55% and 31.45%. MgONPs had antibacterial activity against
Bacillus subtilis
,
Escherichia coli
,
Vibrio harveyi
,
Vibrio parahemolyticus
, and
Staphylococcus aureus
with MIC, 6Â ÎŒg/mL. The IC
50
value for MCFâ7 cell was 113.56âÎŒg/mL, and the normal cell line was 785.69âÎŒg/mL. The NPs also exhibited hemolytic features in a doseâdependent manner. The MgONPs exhibited photocatalytic degradation of methyl violet, CBB Gâ250, and malachite green in 60âmin duration. MgONPs had promising antibacterial, cytotoxic, hemolytic, photocatalytic, and seed germination activity. They have the potential to serve as an additive in a variety of biological applications.Universidade de Vigo/CISU
Green synthesis of silver nanoparticles using allium cepa var. Aggregatum natural extract: antibacterial and cytotoxic properties
Financiado para publicaciĂłn en acceso aberto: Universidade de Vigo/CISUGThe chemical content of plant excerpts can be efficiently employed to reduce the metal ions to nanoparticles in the one-pot green production method. Here, green production of silver nanoparticles (AC-AgNPs) is performed by means of Allium cepa var. Aggregatum (shallot) extract as a stabilizer and reducer. The shape, size, and morphology of resultant AC-AgNPs are examined by optical spectroscopy analysis such as UV for nucleation and coalescence processes of the AC-AgNPs. Through FTIR functional group is determined and through DLS size is defined, it was confirmed that metallic AgNPs were successfully synthesized through the green synthesis route, and these results agreed well with the results obtained in the XRD pattern along with TEM spectroscopy, where the TEM images confirm the formation of sphere-like nanostructures along with SAED analysis. The chemical characterization is performed with XPS; the obtained molecular species in the materials are determined from the energy profile. Antioxidant activity of AC-AgNPs versus DPPH substrate is carried out. Antibacterial activity is well established against Gram-negative and Gram-positive organisms. Cell viability is accomplished, followed by an MTT assay, and a cytotoxicity assay of AC-AgNPs on MCFâ7 cell lines is also carried out. Highlights: (1). This study highlights the eco-friendly synthesis of silver nanoparticles from Allium cepa var. Aggregatum Natural Extract. (2). The synthesized AC-AgNPs were characterized by UV-VIS, FT-IR, XRD, TEM, and XPS. (3). The synthesized nanoparticles were well dispersed in nature and the size range of 35 ± 8 nm. (4). The anti-candidal activity of biosynthesized silver nanoparticles was evaluated against the following Gram-Negative organisms: Escherichia coli (E. coli), and the following Gram-positive organisms: Staphylococcus aureus strains. The biosynthesized AC-AgNPs showed enhanced antiseptic features anti both Gram-positive and negative organisms. (5). Besides, the in vitro cytotoxic outcomes of AC-AgNPs were assessed versus MCF-7 cancerous cells, and the reduction in the feasibility of cancer cells was established via MTT assay, which suggests potential biomedical applications.King Saud University | Ref. RSP-2021/34
Performance evaluation of a mechanical ventilation simulation model for diverse respiratory complications
Medical life-saving techniques include mechanical ventilation. During the COVID-19 epidemic, the lack of inexpensive, precise, and accessible mechanical ventilation equipment was the biggest challenge. The global need exploded, especially in developing nations. Global researchers and engineers are developing inexpensive, portable medical ventilators. A simpler mechanical ventilator system with a realistic lungs model is simulated in this work. A systematic ventilation study is done using the dynamic simulation of the model. Simulation findings of various medical disorders are compared to standard data. The maximum lung pressure (Pmax) was 15.78 cmH2O for healthy lungs, 17.72 for cardiogenic pulmonary edema, 16.05 for pneumonia, 19.74 for acute respiratory distress syndrome (ARDS), 17.1 for AECOPD, 19.64 for asthma, and 15.09 for acute intracranial illnesses and head traumas. All were below 30 cmH2O, the average maximum pressure. The computed maximum tidal volume (TDVmax) is 0.5849 l, substantially lower than that of the healthy lungs (0.700 l). The pneumonia measurement was 0.4256 l, substantially lower than the typical 0.798 l. TDVmax was 0.3333 l for ARDS, lower than the usual 0.497 l. The computed TDVmax for AECOPD was 0.6084 l, lower than the normal 0.700 l. Asthma had a TDVmax of 0.4729 l, lower than the typical 0.798 l. In individuals with acute cerebral diseases and head traumas, TDVmax is 0.3511 l, lower than the typical 0.700 l. The results show the viability of the model as it performs accurately to the presented medical condition parameters. Further clinical trials are needed to assess the safety and reliability of the simulation model
<i>In vitro</i> antioxidant, antimicrobial, cytotoxic potential of gold and silver nanoparticles prepared using <i>Embelia ribes</i>
<p>In recent years, the green synthesis of gold (GNPs) and silver (SNPs) nanoparticles has gained great interest among chemists and researchers. The present study reports an eco-friendly, cost-effective, rapid and easy method for the synthesis of gold and silver nanoparticles using the seed extract of <i>Embelia ribes</i> (SEEr) as capping and reducing agent. The synthesised GNPs and SNPs were characterised using the following techniques: UVâvis spectroscopy, DLS, HR-TEM, FT-IR and XRD. The free radical scavenging potential of GNPs and SNPs was measured by DPPH assay and Phosphomolybdenum assay. Further, the antimicrobial activity against two micro-organisms were tested using disc diffusion method and cytotoxicity of GNPs and SNPs was determined against MCF-7 cell lines at different concentrations by MTT assay. Both the GNPs and SNPs prepared from <i>E. ribes</i> comparatively showed promising results thereby proving their clinical importance.</p
Evaluating the Therapeutic Importance of Gold Nanoparticles Formed by the Biogenic Synthesis Route of Madhuca longifolia Reduction
Herbal plants have been used, in light of their responsiveness and wide availability, for the construction of a pioneering nanomaterial. In this study, a colloidal suspension of gold nanoparticles (GNPs) was synthesized from an extract of Madhuca longifolia (ML) using chloroauric acid. For biomedical applications, Madhuca longifolia (ML) was used as a bioreductant as well as a capping agent The formed ML-GNPs were analyzed using different analytical techniques, antioxidant assays, and thiazolyl blue formazan assay against A549 cell lines to evaluate clinical relevance. They were further evaluated for their influence on antimicrobial activity using a disc diffusion test against two different microorganisms, Proteus vulgaris and Micrococcus luteus. The ML-GNPs produced had good antioxidant, antibacterial, and anticancer activities. The conformation of the XRD spectra with prominent characteristic planes was indexed to the face-centered cubic (fcc)-structured GNPs. Surface morphology analysis was used to determine the particle size of the GNPs. Fourier transform infrared spectra of the samples were used to determine the analogs for strong H bonding. The MIC values of biogenic GNPs against both strains of Proteus vulgaris and Micrococcus luteus was calculated as 0.29 and 0.96 g/mL, respectively, and triclosan was considered as 0.4 and 2 g/mL, respectively. The findings of this study will be beneficial for future studies of the therapeutic potential of ML-GNPs. Actively, ML-GNPs can be a capable material for formulating nanomedicines after subsequent clinical experiments