163 research outputs found

    Post-translational Modification of Pregnane X Receptor

    Get PDF
    Pregnane x receptor (PXR, NR1I2) was originally characterized as a broad spectrum entero-hepatic xenobiotic ‘sensor’ and master-regulator of drug inducible gene expression. A compelling description of ligand-mediated gene activation has been unveiled in the last decade that firmly establishes this receptor’s central role in the metabolism and transport of xenobiotics in mammals. Interestingly, pharmacotherapy with potent PXR ligands produces several profound side effects including decreased capacities for gluconeogenesis, lipid metabolism, and inflammation; likely due to PXR-mediated repression of gene expression programs underlying these pivotal physiological functions. An integrated model is emerging that reveals a sophisticated interplay between ligand binding and the ubiquitylation, phosphorylation, SUMOylation, and acetylation status of this important nuclear receptor protein. These discoveries point to a key role for the post-translational modification of PXR in the selective suppression of gene expression, and open the door to the study of completely new modes of regulation of the biological activity of PXR

    PXR antagonists and implication in drug metabolism

    Get PDF
    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application

    Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens

    Get PDF
    Gut microbial β-glucuronidase (GUS) enzymes have been suggested to be involved in the estrobolome, the collection of microbial reactions involving estrogens. Furthermore, bacterial GUS enzymes within the gastrointestinal tract have been postulated to be a contributing factor in hormone-driven cancers. However, to date, there has been no experimental evidence to support these hypotheses. Here we provide the first in vitro analysis of the ability of 35 human gut microbial GUS enzymes to reactivate two distinct estrogen glucuronides, estrone-3-glucuronide and estradiol-17-glucuronide, to estrone and estradiol, respectively. We show that certain members within the Loop 1, mini-Loop 1, and FMN-binding classes of gut microbial GUS enzymes can reactivate estrogens from their inactive glucuronides. We provide molecular details of key interactions that facilitate these catalytic processes and present the structures of two novel human gut microbial GUS enzymes related to the estrobolome. Further, we demonstrate that estrogen reactivation by Loop 1 bacterial GUS enzymes can be inhibited both in purified enzymes and in fecal preparations of mixed murine fecal microbiota. Finally, however, despite these in vitro and ex vivo data, we show that a Loop 1 GUS-specific inhibitor is not capable of reducing the development of tumors in the PyMT mouse model of breast cancer. These findings validate that gut microbial GUS enzymes participate in the estrobolome but also suggest that the estrobolome is a multidimensional set of processes on-going within the mammalian gastrointestinal tract that likely involves many enzymes, including several distinct types of GUS proteins

    Acetylation of lysine 109 modulates pregnane X receptor DNA binding and transcriptional activity

    Get PDF
    Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug–drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC–MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels

    Elucidating the ‘Jekyll and Hyde’ Nature of PXR: The Case for Discovering Antagonists or Allosteric Antagonists

    Get PDF
    The pregnane X receptor belongs to the nuclear hormone receptor superfamily and is involved in the transcriptional control of numerous genes. It was originally thought that it was a xenobiotic sensor controlling detoxification pathways. Recent studies have shown an increasingly important role in inflammation and cancer, supporting its function in abrogating tissue damage. PXR orthologs and PXR-like pathways have been identified in several non-mammalian species which corroborate a conserved role for PXR in cellular detoxification. In summary, PXR has a multiplicity of roles in vivo and is being revealed as behaving like a “Jekyll and Hyde” nuclear hormone receptor. The importance of this review is to elucidate the need for discovery of antagonists of PXR to further probe its biology and therapeutic applications. Although several PXR agonists are already reported, virtually nothing is known about PXR antagonists. Here, we propose the development of PXR antagonists through chemical, genetic and molecular modeling approaches. Based on this review it will be clear that antagonists of PXR and PXR-like pathways will have widespread utility in PXR biology and therapeutics

    The Zebrafish Information Network: the zebrafish model organism database

    Get PDF
    The Zebrafish Information Network (ZFIN; ) is a web based community resource that implements the curation of zebrafish genetic, genomic and developmental data. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community resources such as meeting announcements and contact information. Recent enhancements to ZFIN include (i) comprehensive curation of gene expression data from the literature and from directly submitted data, (ii) increased support and annotation of the genome sequence, (iii) expanded use of ontologies to support curation and query forms, (iv) curation of morpholino data from the literature, and (v) increased versatility of gene pages, with new data types, links and analysis tools

    Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR

    Get PDF
    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications

    Garcinoic acid prevents β-amyloid (Aβ) deposition in the mouse brain

    Get PDF
    Garcinoic acid (GA or δ-T3-13'COOH), is a natural vitamin E metabolite that has preliminarily been identified as a modulator of nuclear receptors involved in β-amyloid (Aβ) metabolism and progression of Alzheimer's disease (AD). In this study, we investigated GA's effects on Aβ oligomer formation and deposition. Specifically, we compared them with those of other vitamin E analogs and the soy isoflavone genistein, a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that has therapeutic potential for managing AD. GA significantly reduced Aβ aggregation and accumulation in mouse cortical astrocytes. Similarly to genistein, GA up-regulated PPARγ expression and apolipoprotein E (ApoE) efflux in these cells with an efficacy that was comparable with that of its metabolic precursor δ-tocotrienol and higher than those of α-tocopherol metabolites. Unlike for genistein and the other vitamin E compounds, the GA-induced restoration of ApoE efflux was not affected by pharmacological inhibition of PPARγ activity, and specific activation of pregnane X receptor (PXR) was observed together with ApoE and multidrug resistance protein 1 (MDR1) membrane transporter up-regulation in both the mouse astrocytes and brain tissue. These effects of GA were associated with reduced Aβ deposition in the brain of TgCRND8 mice, a transgenic AD model. In conclusion, GA holds potential for preventing Aβ oligomerization and deposition in the brain. The mechanistic aspects of GA's properties appear to be distinct from those of other vitamin E metabolites and of genistein
    corecore