15 research outputs found

    Understanding of key drivers of improving occupational health and safety performance: a case study of a fast-moving consumer goods manufacturing company.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.The benefits of implementing good occupational health and safety management systems or programs are well documented. Simple improvements in occupational health and safety can increase competitiveness, profitability and motivation of employees. Reckitt Benckiser Group plc is the global leading consumer health and hygiene company driven by a purpose of providing innovative solutions for healthier lives and happier homes. The company recognized occupational health and safety of its employees as a priority and embarked on a number of key initiatives or programs to drive improvements of its occupational health and safety performance. The study assessed the impact or effectiveness of the key occupational health and safety initiatives or programs which have been implemented at the South Africa manufacturing site over the period Jan 2017 to May 2019. The effectiveness or impact of the various initiatives or programs was measured using a survey of the shop floor employees who have seen the transformation of their work environment brought about by the initiatives as well as participated in the initiatives or programs. A 100 employees participated in the study out of a total eligible population of 250 employees. Out of the 14 key initiatives or programs reviewed the most effective health and safety initiatives or programs which were confirmed by both cumulative analysis and average ratings are; Health and Safety Golden Rules, Permit to Work, Health and Safety Toolbox talks and Machinery Guarding Improvements while the least effective initiatives are; SHE Competitions, near Miss Reporting, Engagement with Team Leaders and SHE Recognition Activities. The study recommended that the company needs to pursue the implementation of the most effective initiatives or programs in their current form or reinforce them as they can be attributed to the turnaround in the recent improvement in occupational health and safety performance experienced by the company. These initiatives or programs can be adopted in similar manufacturing environments in turning around occupational health and safety performance. The company needs to review the least effective programs with a view of understanding the reason why they have not been very impactful and how they can be turned around or fine-tuned to be more effective. The continuation of these programs in their current form will most likely lead to poor participation from employees and lack of interest as they are perceived to be less effective by employees

    Laccase-catalyzed cross-linking of BSA mediated by tyrosine

    Get PDF
    Tyrosine was explored as a cross-linking agent to form cross-linked bovine serum albumin (BSA) using laccase as a catalyst. Liquid chromatography-mass spectrometry (LC-MS) and fluorescence spectra indicated that tyrosine can be mainly oxidized to be dityrosine. Spectra analysis and molecular weight were used to characterize the BSA treated with tyrosine and laccase. Both SDS-PAGE and size exclusion chromatography confirmed the formation of cross-linked BSA, while most of the protein products existed as BSA–tyrosine conjugates. The MALDI-TOF analysis revealed that five tyrosine units were grafted on one BSA monomer, however one cross-linked BSA consists of two BSA monomers and 18 tyrosine. Furthermore, the content of the amino acid of BSA was identified using amino acid analysis, among those the percentage of lysine presented a visible decline from 12.36% to 11.43%, corresponding to 4-5 lysine residues. The pure and modified BSA were hydrolyzed by trypsin and the corresponding peptides were obtained. Different mass of five peptides from LC-MS spectra after hydrolysis indicated that tyrosine could react with Lys-136, Lys-204, Lys-224, Lys-322 and Lys-537 in BSA, promoting the formation of BSA–tyrosine conjugates and cross-linked BSA.This study was supported by Chinese Government Scholarship under China Scholar Council (NO. 201906790043) and “the Fundamental Research Funds for the Central Universities (NO. JUSRP52007A). This study was also supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte

    Enhancement of the phytonutrient content of a gluten-free soup using a composite of vegetables

    No full text
    The demand for instant nutritious functional foods has been on the rise, due to the increase in the incidence of lifestyle diseases. A dried phytochemical-rich instant soup, developed using a variety of vegetables, may be an attractive food for health-conscious consumers. Therefore, this study aimed at using response surface methodology to develop an instant vegetable soup rich in fiber and phytochemicals, whilst with reduced salt. The independent variables were a green leafy vegetable cocktail, sweet potato flour and pumpkin flour; and the dependent variables were total phenolics and the color of the soup. The soup was acceptable, with an improved in-vitro antioxidant activity, increased ÎČ- carotene content, 18 g fiber, 7.74 g proteins, 51.73 g carbohydrates and 1.3 g sodium per 100 g soup powder. The major flavonoid in the soup was catechin, whilst the phenolic acids; ferulic acid, caffeic acid, ellagic acid and luteolin were present in relatively high amounts in the soup. Ellagic acid content in soup was similar to that of strawberry, whilst caffeic acid was lower than levels noted in apples. The developed soup with different vegetables can be of benefit with various phenolic compounds and other phytonutrients

    Co-Ingestion of Natal Plums (Carissa macrocarpa) and Marula Nuts (Sclerocarya birrea) in a Snack Bar and Its Effect on Phenolic Compounds and Bioactivities

    No full text
    This study investigated the effect of co-ingesting Natal plums (Carissa macrocarpa) and Marula nuts (Sclerocarya birrea) on the bioaccessibility and uptake of anthocyanins, antioxidant capacity, and the ability to inhibit α-glucosidase. A Natal plum–Marula nut bar was made by mixing the raw nuts and the fruit pulp in a ratio 1:1 (v/v). The cyanidin-3-O-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside content (Cy-3-G) were quantified using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Inclusion of Natal plum in the Marula nut bar increased the Cy-3-Sa, Cy-3-G content, antioxidants capacity and α-glucosidase inhibition compared to ingesting Marula nut separately at the internal phase. Adding Natal plum to the Marula nut bar increased bioaccessibility of Cy-3-Sa, Cy-3-G, quercetin, coumaric acid, syringic acid and ferulic acid to 80.2% and 71.9%, 98.7%, 95.2%, 51.9% and 89.3%, respectively, compared to ingesting the Natal plum fruit or nut separately

    Effect of Lactic Acid Fermentation on Color, Phenolic Compounds and Antioxidant Activity in African Nightshade

    No full text
    International audienceThis study aimed to investigate the influences of fermentation at 37 °C for 3 days by different lactic acid bacterium strains, Lactobacillus plantarum (17a), Weissella cibaria (21), Leuconostoc pseudomesenteroides (56), W. cibaria (64) or L. plantarum (75), on color, pH, total soluble solids (TSS), phenolic compounds and antioxidant activity of African nightshade (leaves). Results indicated fermentation with L. plantarum 75 strain significantly decreased the pH and total soluble solids, and increased the concentration of ascorbic acid after 3 days. L. plantarum 75 strain limited the color modification in fermented nightshade leaves and increased the total polyphenol content and the antioxidant activity compared to the raw nightshade leaves. Overall, L. plantarum75 enhanced the functional potential of nightshade leaves and improved the bioavailability of gallic, vanillic acid, coumaric, ferulic ellagic acids, flavonoids (catechin, quercetin and luteolin) and ascorbic acid compared to the other lactic acid bacterium strains. Correlation analysis indicated that vanillic acid and p-coumaric acid were responsible for the increased antioxidant activity. Proximate analysis of the fermented nightshade leaves showed reduced carbohydrate content and low calculated energy

    Enrichment of mango fruit leathers with natal plum (Carissa macrocarpa) improves their phytochemical content and antioxidant properties

    No full text
    Natal plum fruit () is indigenous to South Africa and a rich source of cyanidin derivatives. Indigenous fruits play a major role in food diversification and sustaining food security in the Southern African region. Agro-processing of indigenous are practiced adopted by the rural African communities in order to reduce the postharvest wastage of fruit commodities. In the current study, Natal plum was added to mango pulp at different ratios (mango and Natal plum (5:1, 3:1, 2:1)) to develop a healthy-functional snack (fruit leather). The effects of added Natal plum on the availability of antioxidant constituents and in vitro antioxidant properties of a mango-based fruit leather were evaluated by comparing with mango fruit leather. Fruit leather containing mango and Natal plum (2:1) retained the highest content of cyanidin-3-O-glucoside chloride, cyanidin- 3-O-ÎČ-sambubioside, epicatechin, apigenin, kaempferol, luteolin, quercetin-3-O-rhamnosyl glucoside, catechin, quinic, and chlorogenic acids, and in vitro antioxidant activity. Proximate analysis showed that 100 g of fruit leather (2:1) contained 63.51 g carbohydrate, 40.85 g total sugar, 0.36 g fat, and 269.88 cal. Therefore, enrichment of mango fruit leather with Natal plum (2:1) increases its phytochemical content and dietary phytochemical intake, especially for school children and adolescents

    Comparison of Caffeoylquinic Acids and Functional Properties of Domestic Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots with Established Overseas Varieties

    No full text
    Root samples of sweet potato varieties originating from South Africa (‘Ndou’, ‘Bophelo’, ‘Monate’, and ‘Blesbok’), the USA (‘Beauregard’), and Peru (‘199062.1′) were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/QTOF/MS) and chemometrics to characterize and compare the locally developed varieties with well-known established overseas varieties. The highest total phenol content was detected in ‘Bophelo’, followed by ‘Beauregard’ and Peruvian variety ‘199062.1’. The Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model classified the storage roots of six sweet potato varieties into two clusters. In the OPLS-DA scatter plot, one cluster, which included Peruvian variety ‘199062.1’, was separated from the others. L-tryptophan and 3-caffeoylquinic acid (CQA) showed variable importance in projection (VIP) scores greater than 1.5. Based on the OPLS-DA-S-plot, L-tryptophan separated the other varieties from Peruvian variety ‘199062.1’. Peruvian variety ‘199062.1’ contained higher concentrations of CQA (1,3-diCQA, 1,4-diCQA, 3,5-diCQA, 4,5-diCQA, 3-CQA, and 5-CQA) and 5-hydroxy-6-methoxycoumarin 7-glucoside than other varieties. Among all sweet potato varieties analyzed, Peruvian variety ‘199062.1′ showed the highest ferric reducing antioxidant power (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, and [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate)] scavenging activity. Among the local sweet potato varieties, ‘Bophelo’ has the greatest potential for commercialization as it is the richest source of CQA

    Cooking African Pumpkin Leaves (Momordica balsamina L.) by Stir-Frying Improved Bioactivity and Bioaccessibility of Metabolites—Metabolomic and Chemometric Approaches

    No full text
    The leaves of African pumpkins (Momordica balsamina L.) are a commonly consumed traditional vegetable. They are a good source of polyphenolic antioxidants and carotenoids, which are, however, affected by cooking or digestion. We investigated the effect of household cooking methods (stir-frying or boiling) on the changes in bioactive metabolites, antioxidant capacity, release and accessibility of β-carotene and also inhibition of inhibitory activity against α-amylase and α-glucosidase enzymes during in vitro digestion of African pumpkin leaves compared to the raw leaves. Compared to boiled or raw leaves, stir-frying improved the availability of bioactive metabolites at the gastrointestinal phase. Quercetin 3-galactoside and rhamnetin 3-O-glucoside (marker compounds) discriminated the stir-fried leaves from raw leaves and boiled leaves after digestion. Stir-frying improved the release and accessibility of β-carotene and enhanced the antioxidant activities compared to boiling. Dialysable fractions of stir-fried leaves exhibited the greatest inhibitory activity against α-amylase and α-glucosidase enzymes compared to the raw and boiled leaves, as well as acarbose. Stir-frying, therefore, is recommended for use in household cooking to benefit consumers by increasing the intake of phenolics and β-carotene

    Impact of Different Rootstocks on Antioxidant Properties and Volatile Profile of Honeydew Melons (Cucumis melo L.) during Postharvest Storage

    No full text
    Two rootstock hybrids of sweet melons and watermelons (“Kickstart” and “Carnivor” Cucurbita moschata × Cucurbita maxima) grafted onto two watermelon cultivars (scions), “Honeygoal” and “Honeyval”, were examined in this study to determine whether functional compounds, antioxidant properties, and volatile compounds were retained after five days of cold storage at 5 °C and 85% RH following harvest. An interaction exists between cultivars, rootstocks, and storage for total phenolic content, ascorbic acid, chlorophyll content, antioxidant activities, and volatile compounds. Generally, all functional compounds and antioxidant properties decreased during storage; however, “Honeygoal/Carnivor” in cold storage for 7 days retained the total phenols, ascorbic acid, chlorophyl contents, DPPH (15.47 IC50 mg/mL), ABTS (1.06 IC50 mg/mL) scavenging activities, and antioxidant power (IC50 mg/mL) higher than ungrafted, “Honeyval” or “Honeygoal/Kickstart”, “Honeyval/Carnivor” or “Honeyval/Kickstart” melons. The heat map showed a higher abundance of volatile compounds in “Honeygoal/Carnivor” and “Honeyval/Carnivor” melons stored for 7 and 14 days while “Honeygoal/Kickstart” or “Honeyval/Kickstart” requires 14 days of storage. “Honeygoal/Carnivor” and “Honeyval/Carnivor” melons stored for up to 7 days in cold storage were preferred by panelists. Hence, grafting “Honeygoal” melons onto “Carnivor” rootstocks helped to improve the functional compounds, antioxidant properties, and volatiles during storage for 7 days after harvest

    Antioxidant Activities of Co-Encapsulated Natal Plum (Carissa macrocarpa) Juice Inoculated with Ltp. plantarum 75 in Different Biopolymeric Matrices after In Vitro Digestion

    No full text
    International audienceBiopolymeric systems that co-encapsulate probiotics and bioactive compounds ensure timely delivery in the gastrointestinal tract. Cyanidin 3-sambubioside is the dominant anthocyanin in Natal plum (Carissa macrocarpa). This study aims at the co-encapsulation of Natal plum (Carissa macrocarpa) juice inoculated with Lactiplantibacillus plantarum 75 (Ltp. plantarum 75) by freeze-drying using pea protein isolate, maltodextrin, and psyllium mucilage and evaluating their release in vitro. An encapsulation efficiency of >85% was noted in lactic acid bacteria (LAB) survival and anthocyanin content. Freeze-drying produced pinkish-red powder, rich in polyphenols and LAB (>6 Log CFU mL−1) after 14 days of storage. Natal plum juice + maltodextrin + pea protein isolate + psyllium mucilage + Ltp. plantarum 75 (NMPeaPsyB) showed the highest LAB population (6.74 Log CFU mL−1) with a survival rate of 81.9%. After digestion, NMPeaPsyB and NMPeaPsy had the highest LAB survival (>50%) at 67.5% and 67.5 ± 0.75%, respectively, and the highest bioaccessibility of cyanidin 3-sambubioside in Natal plum juice than the other co-encapsulation with other biopolymers. NMPeaPsy and NMPeaPsyB showed phenolic stability in the gastric phase and controlled release in the intestinal simulated phase. The antioxidant activities had strong correlations with cyanidin 3-sambubioside. The results confirmed that microencapsulation is important for improving stability and allowing for the development of functional foods
    corecore