2,640 research outputs found

    An acoustical study of the KIWI B nuclear rocket

    Get PDF
    Kiwi B nuclear rocket acoustics - sound pressure distribution, energy conversion, and power distributio

    Controlling periodic long-range signalling to drive a morphogenetic transition

    Get PDF
    Cells use signal relay to transmit information across tissue scales. However, the production of information carried by signal relay remains poorly characterised. To determine how the coding features of signal relay are generated, we used the classic system for long-range signalling: the periodic cAMP waves that drive Dictyostelium collective migration. Combining imaging and optogenetic perturbation of cell signalling states, we find that migration is triggered by an increase in wave frequency generated at the signalling centre. Wave frequency is regulated by cAMP wave circulation, which organises the long-range signal. To determine the mechanisms modulating wave circulation, we combined mathematical modelling, the general theory of excitable media and mechanical perturbations to test competing models. Models in which cell density and spatial patterning modulate the wave frequency cannot explain the temporal evolution of signalling waves. Instead, our evidence leads to a model where wave circulation increases the ability for cells to relay the signal, causing further increase in the circulation rate. This positive feedback between cell state and signalling pattern regulates the long-range signal coding that drives morphogenesis

    Geometric realizations of generalized algebraic curvature operators

    Full text link
    We study the 8 natural GL equivariant geometric realization questions for the space of generalized algebraic curvature tensors. All but one of them is solvable; a non-zero projectively flat Ricci antisymmetric generalized algebraic curvature is not geometrically realizable by a projectively flat Ricci antisymmetric torsion free connection

    Extensive sequence divergence in the 3' inverted repeat of the chloroplast rbcL gene in non-flowering land plants and algae

    Full text link
    A stem-loop region is present at the 3' terminus of the chloroplast rbcL mRNA in all taxa surveyed to date. In spinach, this structure has been shown by others to be involved in modulating transcript stability and correct 3' terminus processing, and is a conserved feature of other flowering plant rbcL mRNAs. In Chlamydomonas reinhardtii, an analogous structure has been shown by others to serve as a transcription terminator. Our sequencing data have shown that this region is highly divergent in several non-flowering land plants, as evidenced by representatives from the ferns, conifers, `fern-allies' and liverworts. To extend our analysis, a computer-assisted survey of the stem-loop region of the 3' flanking region of published chloroplast rbcL genes was undertaken. The flowering plant rbcL inverted repeats (IR) were remarkably conserved in sequence, allowing for precise multiple alignments of both monocot and dicot sequences within a single matrix. Surprisingly, sequences obtained from non-flowering land plants, algae, photosynthetic protists and photosynthetic prokaryotes were extremely variant, in terms of both sequence composition and thermodynamic parameters.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31333/1/0000243.pd

    Probabilistic Estimation of Site Specific Fault Displacements

    Get PDF
    The College of the Redwoods (CR) located near Eureka, California would like to upgrade a series of existing buildings that are unfortunately located on secondary faults associated with the active Little Salmon Fault (LSF) zone. In the early 1990’s a deterministic value of the maximum dip-slip displacement that had occurred on one of these secondary faults located beneath the southeast building corner of the former library was measured to be 1.7 feet. This displacement was resolved into approximately 1.5 feet horizontal offset and 0.8 feet of vertical offset, based on the secondary fault plane dip. Geologically, it has not been possible to establish the actual dates of the occurrence of the displacements on the observed faults, therefore it was assumed that they all had occurred within the last 11,000 years. The structural engineer for the project has indicated that it was not possible to design for the observed ground displacement of 1.7 feet. This limited study was undertaken to assess the variation of ground displacements that were observed over the area of ground occupied by CR’s Administration, Science, and former Library buildings. The purpose of this study was to evaluate the reasonableness of using a deterministically determined maximum value of displacement in estimating, and designing mitigations for, the structural response, or whether a probabilistic approach could be utilized. The only data available within the limited time frame allowed for the study was from a series of trench logs made as part of a project for locating building sites on the campus in the early 1990’s. As a first step the frequency distributions of both horizontal and vertical displacements located in a volume of soil comprising the area occupied by the above buildings to a depth of 14 feet were examined. The 14 feet was the maximum depth of the trenches used to provide data for the study. Probability density functions (PDF) versus displacements were developed based on the frequency distributions. The area under the PDF curves between given displacement intervals represents the probability of occurrence (POC) of that displacement. A cumulative probability of occurrence for a displacement interval can be determined by adding the individual POC’s. Based on this it was estimated that a horizontal displacement of ≤ 1.0 foot has a probability of 89% of occurring in the next 11,000 years at the site. In contrast, a vertical displacement of ≤ 1.0 foot has a probability of 88% probability of occurrence

    Use of Microzonation to Site Facility on Low Angle Thrust and Associated Fault Bend Folding

    Get PDF
    The campus of the College of the Redwoods is located completely within the Little Salmon Fault Zone, designated by the State of California as an active fault. The College has been extensively investigated for fault rupture and other seismic hazards in 1989, 1993, 1997, 1998, and 1999. The Little Salmon Fault Zone bounds the College and consists of two main northwest-striking, northeastdipping, low-angle thrusts. The west splay daylights along the southwest edge of the campus and projects beneath it. A recurrence interval of 268 years and slip rate of 5+/-3 mm/yr is estimated by CDMG. Individual dip-slip displacements along the west trace are reported to be 12 to 15 feet (3.6 to 4.5 m). Movement on the Little Salmon fault (LSF) is accompanied by growth of broad asymmetric folds in the upper thrust sheet resulting in surface rupture, localized uplift and discreet fault-bend fold axial surfaces. College of the Redwoods is located approximately 8 miles (13 km) south of Eureka and 25 miles (40 km) north-northeast of Cape Mendocino and the Mendocino Triple Junction (MTJ) in northern California. The \u27MTJ is the point of transition fi-om strike-slip faulting of the San Andreas transform system to low-angle thrust faulting and folding associated with the convergent margin of the Cascadia Subduction Zone. Campus infrastructure is located along the base of the Humboldt Hill Anticline (HHA), a major faultbend fold of the Cascadia fold and thrust belt. A new learning resource center (LRC) is proposed for a location 400 feet (120 m) northeast of where the west trace of the LSF daylights and 200 feet (60 m) above the low-angle fault plane. Building setback and design recommendations to mitigate for both fault rupture hazards and fault-generated folding hazards are presented

    Additive Equivalence in Turbulent Drag Reduction by Flexible and Rodlike Polymers

    Get PDF
    We address the "Additive Equivalence" discovered by Virk and coworkers: drag reduction affected by flexible and rigid rodlike polymers added to turbulent wall-bounded flows is limited from above by a very similar Maximum Drag Reduction (MDR) asymptote. Considering the equations of motion of rodlike polymers in wall-bounded turbulent ensembles, we show that although the microscopic mechanism of attaining the MDR is very different, the macroscopic theory is isomorphic, rationalizing the interesting experimental observations.Comment: 8 pages, PRE, submitte

    Unusual characteristics of Codium fragile chloroplast DNA revealed by physical and gene mapping

    Full text link
    A complete physical map of the Codium fragile chloroplast genome was constructed and the locations of a number of chloroplast genes were determined. Several features of this circular genome are unusual. At 89 kb in size, it is the smallest chloroplast genome known. Unlike most chloroplast genomes it lacks any large repeat elements. The 8 kb spacer region between the 16 S and 23 S rRNA genes is the largest such spacer characterized to date in chloroplast DNA. This spacer region is also unusual in that it contains the rps 12 gene or at least a portion thereof. Three regions polymorphic for size are present in the Codium chloroplast genome. The psb A and psb C genes map closely to one of these regions, another region is in the spacer between the 16 S and 23 S rRNA genes and the third is very close to or possibly within the 16 S rRNA gene. The gene order in the Codium genome bears no marked resemblance to either the “consensus” vascular plant order or to that of any green algal or bryophyte genome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47569/1/438_2004_Article_BF00334385.pd
    • …
    corecore