5,993 research outputs found

    How to model quantum plasmas

    Full text link
    Traditional plasma physics has mainly focused on regimes characterized by high temperatures and low densities, for which quantum-mechanical effects have virtually no impact. However, recent technological advances (particularly on miniaturized semiconductor devices and nanoscale objects) have made it possible to envisage practical applications of plasma physics where the quantum nature of the particles plays a crucial role. Here, I shall review different approaches to the modeling of quantum effects in electrostatic collisionless plasmas. The full kinetic model is provided by the Wigner equation, which is the quantum analog of the Vlasov equation. The Wigner formalism is particularly attractive, as it recasts quantum mechanics in the familiar classical phase space, although this comes at the cost of dealing with negative distribution functions. Equivalently, the Wigner model can be expressed in terms of NN one-particle Schr{\"o}dinger equations, coupled by Poisson's equation: this is the Hartree formalism, which is related to the `multi-stream' approach of classical plasma physics. In order to reduce the complexity of the above approaches, it is possible to develop a quantum fluid model by taking velocity-space moments of the Wigner equation. Finally, certain regimes at large excitation energies can be described by semiclassical kinetic models (Vlasov-Poisson), provided that the initial ground-state equilibrium is treated quantum-mechanically. The above models are validated and compared both in the linear and nonlinear regimes.Comment: To be published in the Fields Institute Communications Series. Proceedings of the Workshop on Kinetic Theory, The Fields Institute, Toronto, March 29 - April 2, 200

    Autoresonant control of the many-electron dynamics in nonparabolic quantum wells

    Full text link
    The optical response of nonparabolic quantum wells is dominated by a strong peak at the plasmon frequency. When the electrons reach the anharmonic regions, resonant absorption becomes inefficient. This limitation is overcome by using a chirped laser pulse in the autoresonant regime. By direct simulations using the Wigner phase-space approach, the authors prove that, with a sequence of just a few pulses, electrons can be efficiently detrapped from a nonparabolic well. For an array of multiple quantum wells, they can create and control an electronic current by suitably applying an autoresonant laser pulse and a slowly varying dc electric field.Comment: 3 page

    Fidelity decay in trapped Bose-Einstein condensates

    Get PDF
    The quantum coherence of a Bose-Einstein condensate is studied using the concept of quantum fidelity (Loschmidt echo). The condensate is confined in an elongated anharmonic trap and subjected to a small random potential such as that created by a laser speckle. Numerical experiments show that the quantum fidelity stays constant until a critical time, after which it drops abruptly over a single trap oscillation period. The critical time depends logarithmically on the number of condensed atoms and on the perturbation amplitude. This behavior may be observable by measuring the interference fringes of two condensates evolving in slightly different potentials.Comment: 4 pages, to appear in Physical Review Letters, February 200

    A multistream model for quantum plasmas

    Full text link
    The dynamics of a quantum plasma can be described self-consistently by the nonlinear Schroedinger-Poisson system. Here, we consider a multistream model representing a statistical mixture of N pure states, each described by a wavefunction. The one-stream and two-stream cases are investigated. We derive the dispersion relation for the two-stream instability and show that a new, purely quantum, branch appears. Numerical simulations of the complete Schroedinger-Poisson system confirm the linear analysis, and provide further results in the strongly nonlinear regime. The stationary states of the Schroedinger-Poisson system are also investigated. These can be viewed as the quantum mechanical counterpart of the classical Bernstein-Greene-Kruskal modes, and are described by a set of coupled nonlinear differential equations for the electrostatic potential and the stream amplitudes.Comment: 20 pages, 10 figure

    Different Facets of Chaos in Quantum Mechanics

    Full text link
    Nowadays there is no universally accepted definition of quantum chaos. In this paper we review and critically discuss different approaches to the subject, such as Quantum Chaology and the Random Matrix Theory. Then we analyze the problem of dynamical chaos and the time scales associated with chaos suppression in quantum mechanics. Summary: 1. Introduction 2. Quantum Chaology and Spectral Statistics 3. From Poisson to GOE Transition: Comparison with Experimental Data 3.1 Atomic Nuclei 3.2 The Hydrogen Atom in the Strong Magnetic Field 4. Quantum Chaos and Field Theory 5. Alternative Approaches to Quantum Chaos 6. Dynamical Quantum Chaos and Time Scales 6.1 Mean-Field Approximation and Dynamical Chaos 7. ConclusionsComment: RevTex, 25 pages, 7 postscript figures, to be published in Int. J. Mod. Phys.

    Variational approach for the quantum Zakharov system

    Get PDF
    The quantum Zakharov system is described in terms of a Lagrangian formalism. A time-dependent Gaussian trial function approach for the envelope electric field and the low-frequency part of the density fluctuation leads to a coupled, nonlinear system of ordinary differential equations. In the semiclassic case, linear stability analysis of this dynamical system shows a destabilizing r\^ole played by quantum effects. Arbitrary value of the quantum effects are also considered, yielding the ultimate destruction of the localized, Gaussian trial solution. Numerical simulations are shown both for the semiclassic and the full quantum cases.Comment: 6 figure

    Bose-Einstein condensation of positronium: modification of the s-wave scattering length below the critical temperature

    Full text link
    The production of a Bose-Einstein condensate made of positronium may be feasible in the near future. Below the condensation temperature, the positronium collision process is modified by the presence of the condensate. This makes the theoretical description of the positronium kinetics at low temperature challenging. Based on the quasi-particle Bogoliubov theory, we describe the many-body particle-particle collision in a simple manner. We find that, in a good approximation, the full positronium-positronium interaction can be described by an effective scattering length. Our results are general and apply to different species of bosons. The correction to the bare scattering length is expressed in terms of a single dimensionless parameter that completely characterizes the condensate

    Ferromagnetic behavior in magnetized plasmas

    Full text link
    We consider a low-temperature plasma within a newly developed MHD Fluid model. In addition to the standard terms, the electron spin, quantum particle dispersion and degeneracy effects are included. It turns out that the electron spin properties can give rise to Ferromagnetic behavior in certain regimes. If additional conditions are fulfilled, a homogenous magnetized plasma can even be unstable. This happen in the low-temperature high-density regime, when the magnetic properties associated with the spin can overcome the stabilizing effects of the thermal and Fermi pressure, to cause a Jeans like instability.Comment: 4 pages, 1 figur

    Theory and applications of the Vlasov equation

    Full text link
    Forty articles have been recently published in EPJD as contributions to the topical issue "Theory and applications of the Vlasov equation". The aim of this topical issue was to provide a forum for the presentation of a broad variety of scientific results involving the Vlasov equation. In this editorial, after some introductory notes, a brief account is given of the main points addressed in these papers and of the perspectives they open.Comment: Editoria
    • …
    corecore