61 research outputs found

    CLONING OF THE 1.4-kb mRNA SPECIES OF HUMAN COMPLEMENT FACTOR H REVEALS A NOVEL MEMBER OF THE SHORT CONSENSUS REPEAT FAMILY RELATED TO THE CARBOXY TERMINAL OF THE CLASSICAL 150-kDa MOLECULE

    Get PDF
    Three factor H mRNA species of 4.3 kb, 1.8 kb, and 1.4 kb are constitutively expressed in human liver. Having previously characterized full-length cDNA clones derived from the 4.3-kb and 1.8-kb factor mRNA, we report here the isolation and eucaryotic expression of full-length cDNA clones coding for the 1.4-kbm RNA species. The 1266-bp cDNA codes for a polypeptide of 330 amino acids and contains two polyadenylation signals and a short poly(A)+tailT. he protein is composed of a leader peptide followed by five short consensus repeat domains. It shows a hybrid structure with the last three domains being almost identical to the carboxy- terminal of thcel assical 1 BO-kDa factor H molecule and the two first domains representing unique short consensus repeat structures. Eucaryotic expression in COS7 cells revealed two polypeptides derived from one cDNA clone that area lso found in human serum. Differences between the cDcNloAn es within the last three domains indicate two distinct, possibly allelic sequences that, in addition, differ from the authentic 150-kDa factor H sequence. Southern blot results support the notion that the 4.3-kb factor H and the 1.4-kb factor H-related mRNA are transcribed from two separate but highly homologous genes. Factor H, a glycoprotein of 150,00

    Human complement factor H

    Get PDF
    We isolated cDNA clones coding for the functionally important tryptic N-terminal38- kDa fragment of human complement control protein factor H using polyclonal and monoclonal antibodies to screen a human liver cDNA library cloned in a bacterial expression vector, PEX-1. By testing the reactivity of antibodies specific for the recombinant proteins produced by individual clones with proteolytic fragments of serum H the exact position of these cDNA clones within H was mapped. One clone, H-19, coding for the 38-kDa fragment of H was sequenced and found to code for 289 amino acids derived from the 38-kDa N-terminal fragment as well as for the first 108 amino acids belonging to the complementary 142-kDa tryptic fragment. The derived protein sequence could be arranged in 6 highly homologous repeats of about 60 amino acids each, the homology between the repeats being determined by the characteristic position of cysteine, proline, glycine, tyrosine and tryptophane residues. The region coding for the epitope recognized by one of our monoclonal antibodies was localized by subcloning restriction fragments of H-19 into the expression plasmid and testing for the expression of this epitope

    Chlamydophila abortus Pelvic Inflammatory Disease

    Get PDF
    We report the first documented case of an extragestational infection with Chlamydophila abortus in humans. The pathogen was identified in a patient with severe pelvic inflammatory disease (PID) by sequence analysis of the ompA gene. Our findings raise the possibility that Chlamydiaceae other than Chlamydia trachomatis are involved in PID

    Complement as an Endogenous Adjuvant for Dendritic Cell-Mediated Induction of Retrovirus-Specific CTLs

    Get PDF
    Previous studies have demonstrated the involvement of complement (C) in induction of efficient CTL responses against different viral infections, but the exact role of complement in this process has not been determined. We now show that C opsonization of retroviral particles enhances the ability of dendritic cells (DCs) to induce CTL responses both in vitro and in vivo. DCs exposed to C-opsonized HIV in vitro were able to stimulate CTLs to elicit antiviral activity significantly better than non-opsonized HIV. Furthermore, experiments using the Friend virus (FV) mouse model illustrated that the enhancing role of complement on DC-mediated CTL induction also occurred in vivo. Our results indicate that complement serves as natural adjuvant for DC-induced expansion and differentiation of specific CTLs against retroviruses
    • …
    corecore