703 research outputs found
Multipartite secure state distribution
We introduce the distribution of a secret multipartite entangled state in a
real-world scenario as a quantum primitive. We show that in the presence of
noisy quantum channels (and noisy control operations) any state chosen from the
set of two-colorable graph states (CSS codewords) can be created with high
fidelity while it remains unknown to all parties. This is accomplished by
either blind multipartite entanglement purification, which we introduce in this
paper, or by multipartite entanglement purification of enlarged states, which
offers advantages over an alternative scheme based on standard channel
purification and teleportation. The parties are thus provided with a secret
resource of their choice for distributed secure applications.Comment: V2: Replaced with published version: title changed, 2 figures added,
presentation improve
Entanglement purification protocols for all graph states
We present multiparty entanglement purification protocols that are capable of
purifying arbitrary graph states directly. We develop recurrence and breeding
protocols and compare our methods with strategies based on bipartite
entanglement purification in static and communication scenarios. We find that
direct multiparty purification is of advantage with respect to achievable
yields and minimal required fidelity in static scenarios, and with respect to
obtainable fidelity in the case of noisy operations in both scenarios.Comment: revtex 10 pages, 6 figure
Purification of genuine multipartite entanglement
In tasks, where multipartite entanglement plays a central role, state
purification is, due to inevitable noise, a crucial part of the procedure. We
consider a scenario exploiting the multipartite entanglement in a
straightforward multipartite purification algorithm and compare it to bipartite
purification procedures combined with state teleportation. While complete
purification requires an infinite amount of input states in both cases, we show
that for an imperfect output fidelity the multipartite procedure exhibits a
major advantage in terms of input states used.Comment: 5 pages, 2 figure
Stabilizer state breeding
We present a breeding protocol that distills pure copies of any stabilizer
state from noisy copies and a pool of predistilled pure copies of the same
state, by means of local Clifford operations, Pauli measurements and classical
communication.Comment: RevTeX4, 9 pages, 1 figur
The theoretical capacity of the Parity Source Coder
The Parity Source Coder is a protocol for data compression which is based on
a set of parity checks organized in a sparse random network. We consider here
the case of memoryless unbiased binary sources. We show that the theoretical
capacity saturate the Shannon limit at large K. We also find that the first
corrections to the leading behavior are exponentially small, so that the
behavior at finite K is very close to the optimal one.Comment: Added references, minor change
THE RADIOPROTECTIVE EFFECT OF PHASEOLUS VULGARIS PHYTOHEMAGGLUTININS EXERTED ON VITIA FABA GERMS
No abstract
Fast simulation of stabilizer circuits using a graph state representation
According to the Gottesman-Knill theorem, a class of quantum circuits, namely
the so-called stabilizer circuits, can be simulated efficiently on a classical
computer. We introduce a new algorithm for this task, which is based on the
graph-state formalism. It shows significant improvement in comparison to an
existing algorithm, given by Gottesman and Aaronson, in terms of speed and of
the number of qubits the simulator can handle. We also present an
implementation.Comment: v2: significantly improved presentation; accepted by PR
Entanglement Purification of Any Stabilizer State
We present a method for multipartite entanglement purification of any
stabilizer state shared by several parties. In our protocol each party measures
the stabilizer operators of a quantum error-correcting code on his or her
qubits. The parties exchange their measurement results, detect or correct
errors, and decode the desired purified state. We give sufficient conditions on
the stabilizer codes that may be used in this procedure and find that Steane's
seven-qubit code is the smallest error-correcting code sufficient to purify any
stabilizer state. An error-detecting code that encodes two qubits in six can
also be used to purify any stabilizer state. We further specify which classes
of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review
Quantum states representing perfectly secure bits are always distillable
It is proven that recently introduced states with perfectly secure bits of
cryptographic key (private states representing secure bit) [K. Horodecki et
al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and higher
dimension generalizations always represent distillable entanglement. The
corresponding lower bounds on distillable entanglement are provided. We also
present a simple alternative proof that for any bipartite quantum state
entanglement cost is an upper bound on distillable cryptographic key in
bipartite scenario.Comment: RevTeX, 5 pages, published versio
Multiparticle entanglement purification for two-colorable graph states
We investigate multiparticle entanglement purification schemes which allow
one to purify all two colorable graph states, a class of states which includes
e.g. cluster states, GHZ states and codewords of various error correction
codes. The schemes include both recurrence protocols and hashing protocols. We
analyze these schemes under realistic conditions and observe for a generic
error model that the threshold value for imperfect local operations depends on
the structure of the corresponding interaction graph, but is otherwise
independent of the number of parties. The qualitative behavior can be
understood from an analytically solvable model which deals only with a
restricted class of errors. We compare direct multiparticle entanglement
purification protocols with schemes based on bipartite entanglement
purification and show that the direct multiparticle entanglement purification
is more efficient and the achievable fidelity of the purified states is larger.
We also show that the purification protocol allows one to produce private
entanglement, an important aspect when using the produced entangled states for
secure applications. Finally we discuss an experimental realization of a
multiparty purification protocol in optical lattices which is issued to improve
the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio
- …