703 research outputs found

    Multipartite secure state distribution

    Full text link
    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations) any state chosen from the set of two-colorable graph states (CSS codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.Comment: V2: Replaced with published version: title changed, 2 figures added, presentation improve

    Entanglement purification protocols for all graph states

    Get PDF
    We present multiparty entanglement purification protocols that are capable of purifying arbitrary graph states directly. We develop recurrence and breeding protocols and compare our methods with strategies based on bipartite entanglement purification in static and communication scenarios. We find that direct multiparty purification is of advantage with respect to achievable yields and minimal required fidelity in static scenarios, and with respect to obtainable fidelity in the case of noisy operations in both scenarios.Comment: revtex 10 pages, 6 figure

    Purification of genuine multipartite entanglement

    Full text link
    In tasks, where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.Comment: 5 pages, 2 figure

    Stabilizer state breeding

    Get PDF
    We present a breeding protocol that distills pure copies of any stabilizer state from noisy copies and a pool of predistilled pure copies of the same state, by means of local Clifford operations, Pauli measurements and classical communication.Comment: RevTeX4, 9 pages, 1 figur

    The theoretical capacity of the Parity Source Coder

    Full text link
    The Parity Source Coder is a protocol for data compression which is based on a set of parity checks organized in a sparse random network. We consider here the case of memoryless unbiased binary sources. We show that the theoretical capacity saturate the Shannon limit at large K. We also find that the first corrections to the leading behavior are exponentially small, so that the behavior at finite K is very close to the optimal one.Comment: Added references, minor change

    THE RADIOPROTECTIVE EFFECT OF PHASEOLUS VULGARIS PHYTOHEMAGGLUTININS EXERTED ON VITIA FABA GERMS

    Get PDF
    No abstract

    Fast simulation of stabilizer circuits using a graph state representation

    Full text link
    According to the Gottesman-Knill theorem, a class of quantum circuits, namely the so-called stabilizer circuits, can be simulated efficiently on a classical computer. We introduce a new algorithm for this task, which is based on the graph-state formalism. It shows significant improvement in comparison to an existing algorithm, given by Gottesman and Aaronson, in terms of speed and of the number of qubits the simulator can handle. We also present an implementation.Comment: v2: significantly improved presentation; accepted by PR

    Entanglement Purification of Any Stabilizer State

    Get PDF
    We present a method for multipartite entanglement purification of any stabilizer state shared by several parties. In our protocol each party measures the stabilizer operators of a quantum error-correcting code on his or her qubits. The parties exchange their measurement results, detect or correct errors, and decode the desired purified state. We give sufficient conditions on the stabilizer codes that may be used in this procedure and find that Steane's seven-qubit code is the smallest error-correcting code sufficient to purify any stabilizer state. An error-detecting code that encodes two qubits in six can also be used to purify any stabilizer state. We further specify which classes of stabilizer codes can purify which classes of stabilizer states.Comment: 11 pages, 0 figures, comments welcome, submitting to Physical Review

    Quantum states representing perfectly secure bits are always distillable

    Full text link
    It is proven that recently introduced states with perfectly secure bits of cryptographic key (private states representing secure bit) [K. Horodecki et al., Phys. Rev. Lett. 94, 160502 (2005)] as well as its multipartite and higher dimension generalizations always represent distillable entanglement. The corresponding lower bounds on distillable entanglement are provided. We also present a simple alternative proof that for any bipartite quantum state entanglement cost is an upper bound on distillable cryptographic key in bipartite scenario.Comment: RevTeX, 5 pages, published versio

    Multiparticle entanglement purification for two-colorable graph states

    Full text link
    We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable graph states, a class of states which includes e.g. cluster states, GHZ states and codewords of various error correction codes. The schemes include both recurrence protocols and hashing protocols. We analyze these schemes under realistic conditions and observe for a generic error model that the threshold value for imperfect local operations depends on the structure of the corresponding interaction graph, but is otherwise independent of the number of parties. The qualitative behavior can be understood from an analytically solvable model which deals only with a restricted class of errors. We compare direct multiparticle entanglement purification protocols with schemes based on bipartite entanglement purification and show that the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified states is larger. We also show that the purification protocol allows one to produce private entanglement, an important aspect when using the produced entangled states for secure applications. Finally we discuss an experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the fidelity of cluster states created in such systems.Comment: 22 pages, 8 figures; replaced with published versio
    • …
    corecore