172 research outputs found

    Sizes of Long RNA Molecules Are Determined by the Branching Patterns of Their Secondary Structures

    Get PDF
    Long RNA molecules are at the core of gene regulation across all kingdoms of life, whilst also serving as genomes in RNA viruses. Few studies have addressed the basic physical properties of long single-stranded RNAs. Long RNAs with non-repeating sequences usually adopt highly ramified secondary structures and are better described as branched polymers. In order to test whether a branched polymer model can estimate the overall sizes of large RNAs we employed fluorescence correlation spectroscopy to examine the hydrodynamic radii of a broad spectrum of biologically important RNAs, ranging from viral genomes to long non-coding regulatory RNAs. The relative sizes of long RNAs measured at low ionic strength correspond well to those predicted by two theoretical approaches that treat the effective branching associated with secondary structure formation – one employing the Kramers theorem for calculating radii of gyration, and the other featuring the metric of “maximum ladder distance”. Upon addition of multivalent cations, most RNAs are found to be compacted as compared with their original, low-ionic-strength sizes. These results suggest that sizes of long RNAmolecules are determined by the branching pattern of their secondary structures. They also experimentally validate the proposed computational approaches for estimating hydrodynamic radii of single-stranded RNAs, which use generic RNA structure prediction tools and thus can be universally applied to a wide range of long RNAs

    Sexual experience affects reproductive behavior and preoptic androgen receptors in male mice

    Get PDF
    Reproductive behavior in male rodents is made up of anticipatory and consummatory elements which are regulated in the brain by sensory systems, reward circuits and hormone signaling. Gonadal steroids play a key role in the regulation of male sexual behavior via steroid receptors in the hypothalamus and preoptic area. Typical patterns of male reproductive behavior have been characterized, however these are not fixed but are modulated by adult experience. We assessed the effects of repeated sexual experience on male reproductive behavior of C57BL/6 mice; including measures of olfactory investigation of females, mounting, intromission and ejaculation. The effects of sexual experience on the number of cells expressing either androgen receptor (AR) or estrogen receptor alpha (ERα) in the primary brain nuclei regulating male sexual behavior was also measured. Sexually experienced male mice engaged in less sniffing of females before initiating sexual behavior and exhibited shorter latencies to mount and intromit, increased frequency of intromission, and increased duration of intromission relative to mounting. No changes in numbers of ERα-positive cells were observed, however sexually experienced males had increased numbers of AR-positive cells in the medial preoptic area (MPOA); the primary regulatory nucleus for male sexual behavior. These results indicate that sexual experience results in a qualitative change in male reproductive behavior in mice that is associated with increased testosterone sensitivity in the MPOA and that this nucleus may play a key integrative role in mediating the effects of sexual experience on male behavior

    Hierarchical chemosensory regulation of male-male social interactions in Drosophila

    Get PDF
    Pheromones regulate male social behaviors in Drosophila, but the identities and behavioral role(s) of these chemosensory signals, and how they interact, are incompletely understood. We found that (z)-7-tricosene, a male-enriched cuticular hydrocarbon that was previously shown to inhibit male-male courtship, was essential for normal levels of aggression. The mechanisms by which (z)-7-tricosene induced aggression and suppressed courtship were independent, but both required the gustatory receptor Gr32a. Sensitivity to (z)-7-tricosene was required for the aggression-promoting effect of 11-cis-vaccenyl acetate (cVA), an olfactory pheromone, but (z)-7-tricosene sensitivity was independent of cVA. (z)-7-tricosene and cVA therefore regulate aggression in a hierarchical manner. Furthermore, the increased courtship caused by depletion of male cuticular hydrocarbons was suppressed by a mutation in the olfactory receptor Or47b. Thus, male social behaviors are controlled by gustatory pheromones that promote aggression and suppress courtship, and whose influences are dominant to olfactory pheromones that enhance these behaviors

    Maternal Behavior is Impaired in Female Mice Lacking Type 3 Adenylyl Cyclase

    Get PDF
    Although chemosensory signals generated by mouse pups may trigger maternal behavior of females, the mechanism for detection of these signals has not been fully defined. As some odorant receptors are coupled to the type 3 adenylyl cyclase (AC3), we evaluated the role of AC3 for maternal behavior using AC3−/− female mice. Here, we report that maternal behavior is impaired in virgin and postpartum AC3−/− mice. Female AC3−/− mice failed the pup retrieval assay, did not construct well-defined nests, and did not exhibit maternal aggression. Furthermore, AC3−/− females could not detect odorants or pup urine in the odorant habituation test and were unable to detect pups by chemoreception. In contrast to wild-type mice, AC activity in main olfactory epithelium (MOE) preparations from AC3−/− female mice was not stimulated by odorants or pheromones. Moreover, odorants and pheromones did not evoke electro-olfactogram (EOG) responses in the MOE of AC3−/− female mice. We hypothesize that the detection of chemical signals that trigger maternal behavior in female mice depends upon AC3 in the MOE

    Ribosomal phosphoproteins in Microsporum canis

    No full text
    Ribosomal phosphoproteins of Microsporum canis labelled in vivo were characterised by two-dimensional and SDS polyacrylamide gel electrophoresis. A small subunit protein, S6, was the only phosphoprotein identified in 40S and 80S in basic-acidic two-dimensional gels. Three different forms of phosphorylated S6 were also observed in 40S subunit. On SDS gels five phosphoproteins were identified in 80S; of these three were present in 40S and two in 60S. S6 was the only basic phosphoprotein, while the other four were acidic

    Cycloheximide enhances factor binding to the native 40S ribosomal subunit of Microsporum canis

    No full text
    Native and derived ribosomal particles from the mycelial cells of Microsporum canis grown in the presence and absence of cycloheximide were compared by CsCl equilibrium density gradient centrifugation. Since the buoyant densities of ribonucleoprotein complexes are dependent on the protein-RNA ratio, they reflect the composition of these particles. The native monosomes from cells grown in the presence and absence of cycloheximide had a buoyant density of 1.585 g/cc. The native 60S subunits showed a density of 1.540 g/cc from cells grown in both presence and absence of cycloheximide, while the derived subunits showed a density of 1.610 g/cc. The derived 40S subunits had a density of 1.550 g/cc while the native 40S showed a major species of density 1.535 g/cc with three other minor species ranging in densities from 1.450-1.390 g/cc. The mycelia grown in the presence of cycloheximide showed an increased proportion of native 40S subunits in the density range of 1.450-1.390 g/cc, indicating that the drug enhances factor binding to native ribosomal subunits in M. canis

    Structural analysis of the 5' domain of the HeLa 18S ribosomal RNA by chemical and enzymatic probing.

    No full text
    The secondary structure of HeLa 18S rRNA was investigated by a combination of chemical and enzymatic probing techniques. Using four chemical reagents (DMS*, kethoxal, DEPC and CMCT) which react specifically with unpaired bases and two nucleases (RNase T1 and cobra venom nuclease) which cleave the ribopolynucleotides at unpaired guanines and helical segments, we have analyzed the secondary structure of the 5' domain of 18S rRNA isolated from HeLa 40S ribosomal subunits. The sites at which chemical modifications and nuclease cleavages occurred were identified by primer extension using synthetic deoxyoligonucleotides and reverse transcriptase. These studies led to the deduction of an intra-RNA pairing pattern from the available secondary structure models based on comparative sequence analysis. Apart from the general canonical pairing we have identified noncanonical U-U, G-A, A-G, A-C, C-A and G-G pairing in HeLa 18S rRNA. The differential reactivity of bases to chemical reagents has enabled us to predict the possible configuration of these bases in some of the noncanonical pairing. The absence of chemical reactivities and cobra venom nuclease sensitivity in the terminal loops of helices 6 and 12 indicate a tertiary interaction unique to HeLa 18S rRNA. We have confirmed the existence of the complex tertiary folding recently proposed (Gutell and Woese 1990 Proc. Natl. Acad. Sci. 87, 663-667) for the universally conserved helix 19 in HeLa 18S rRNA. The complementarity of chemical modifications and enzymatic cleavages provided experimental evidence for the proposal of a model structure for the 655 nucleotides of the 5' domain of HeLa 18S rRNA
    corecore