5 research outputs found

    A short list of Equalities induces large sign-rank

    Get PDF
    We exhibit a natural function Fn on n variables that can be computed by just a linear-size decision list of "Equalities," but whose sign-rank is 2Ω (n1/4). This yields the following two new unconditional complexity class separations. 1. Boolean circuit complexity. The function Fn can be computed by linear-size depth-two threshold formulas when the weights of the threshold gates are unrestricted (THR ∘ THR), but any THR ∘ MAJ circuit (the weights of the bottom threshold gates are polynomially bounded in n) computing Fn requires size 2Ω (n1/4). This provides the first separation between the Boolean circuit complexity classes THR ∘ MAJ and THR ∘ THR. While Amano and Maruoka [Proceedings of the 30th International Symposium on Mathematical Foundations of Computer Science, 2005, pp. 107-118] and Hansen and Podolskii [Proceedings of the 25th Annual IEEE Conference on Computational Complexity, 2010, pp. 270-279] emphasized that superpolynomial separations between the two classes remained a basic open problem, our separation is in fact exponential. In contrast, Goldmann, Håstad, and Razborov [Comput. Complexity, 2 (1992), pp. 277-300] showed more than twenty-five years ago that functions efficiently computable by MAJ ∘ THR circuits can also be efficiently computed by MAJ ∘ MAJ circuits. In view of this, it was not even clear if THR ∘ THR was significantly more powerful than THR ∘ MAJ until our work, and there was no candidate function identified for the potential separation. 2. Communication complexity. The function Fn (under the natural partition of the inputs) lies in the communication complexity class PMA. Since Fn has large sign-rank, this implies PMA ⊈ UPP, strongly resolving a recent open problem posed by Göös, Pitassi, and Watson [Comput. Complexity, 27 (2018), pp. 245-304]. In order to prove our main result, we view Fn as an XOR function and develop a technique to lower bound the sign-rank of such functions. This requires novel approximation-theoretic arguments against polynomials of unrestricted degree. Further, our work highlights for the first time the class "decision lists of exact thresholds" as a common frontier for making progress on longstanding open problems in threshold circuits and communication complexity

    One-way communication complexity and non-adaptive decision trees

    Get PDF
    We study the relationship between various one-way communication complexity measures of a composed function with the analogous decision tree complexity of the outer function. We consider two gadgets: the AND function on 2 inputs, and the Inner Product on a constant number of inputs. More generally, we show the following when the gadget is Inner Product on 2b input bits for all b ≥ 2, denoted IP. If f is a total Boolean function that depends on all of its n input bits, then the bounded-error one-way quantum communication complexity of f ◦ IP equals Ω(n(b - 1)). If f is a partial Boolean function, then the deterministic one-way communication complexity of f ◦ IP is at least Ω(b · D→dt (f)), where D→dt (f) denotes non-adaptive decision tree complexity of f. To prove our quantum lower bound, we first show a lower bound on the VC-dimension of f ◦ IP. We then appeal to a result of Klauck [STOC’00], which immediately yields our quantum lower bound. Our deterministic lower bound relies on a combinatorial result independently proven by Ahlswede and Khachatrian [Adv. Appl. Math.’98], and Frankl and Tokushige [Comb.’99]. It is known due to a result of Montanaro and Osborne [arXiv’09] that the deterministic one-way communication complexity of f ◦ XOR equals the non-adaptive parity decision tree complexity of f. In contrast, we show the following when the inner gadget is the AND function on 2 input bits. There exists a function for which even the quantum non-adaptive AND decision tree complexity of f is exponentially large in the deterministic one-way communication complexity of f ◦ AND. However, for symmetric functions f, the non-adaptive AND decision tree complexity of f is at most quadratic in the (even two-way) communication complexity of f ◦ AND. In view of the first bullet, a lower bound on non-adaptive AND decision tree complexity of f does not lift to a lower bound on one-way communication complexity of f ◦ AND. The proof of the first bullet above uses the well-studied Odd-Max-Bit function. For the second bullet, we first observe a connection between the one-way communication complexity of f and the Möbius sparsity of f, and then give a lower bound on the Möbius sparsity of symmetric functions. An upper bound on the non-adaptive AND decision tree complexity of symmetric functions follows implicitly from prior work on combinatorial group testing; for the sake of completeness, we include a proof of this result. It is well known that the rank of the communication matrix of a function F is an upper bound on its deterministic one-way communication complexity. This bound is known to be tight for some F. However, in our final result we show that this is not the case when F = f ◦ AND. More precisely we show that for all f, the deterministic one-way communication complexity of F = f ◦ AND is at most (rank(MF))(1 - Ω(1)), where MF denotes the communication matrix of F

    Lifting to parity decision trees via Stifling

    Get PDF
    We show that the deterministic decision tree complexity of a (partial) function or relation f lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation f ◦ g as long as the gadget g satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([Göös, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of f, which could be exponentially smaller than its deterministic counterpart when either f is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to f. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., Res(☉), of the unsatisfiability of closely related constant-width CNF formulas

    Tight Chang’s-lemma-type bounds for Boolean functions

    Get PDF
    Chang’s lemma (Duke Mathematical Journal, 2002) is a classical result in mathematics, with applications spanning across additive combinatorics, combinatorial number theory, analysis of Boolean functions, communication complexity and algorithm design. For a Boolean function f that takes values in {-1, 1} let r(f) denote its Fourier rank (i.e., the dimension of the span of its Fourier support). For each positive threshold t, Chang’s lemma provides a lower bound on δ(f):= Pr[f(x) = -1] in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least 1/t. In this work we examine the tightness of Chang’s lemma with respect to the following three natural settings of the threshold: the Fourier sparsity of f, denoted k(f), the Fourier max-supp-entropy of f, denoted k′(f), defined to be the maximum value of the reciprocal of the absolute value of a non-zero Fourier coefficient, the Fourier max-rank-entropy of f, denoted k′′(f), defined to be the minimum t such that characters whose coefficients are at least 1/t in magnitude span a r(f)-dimensional space. In this work we prove new lower bounds on δ(f) in terms of the above measures. One of our lower bounds, δ(f) = Ω (r(f)2/(k(f) log2 k(f))), subsumes and refines the previously best known upper bound r(f) = O(pk(f) log k(f)) on r(f) in terms of k(f) by Sanyal (Theory of Computing, 2019). We improve upon this bound and show r(f) = O(pk(f)δ(f) log k(f)). Another lower bound, δ(f) = Ω (r(f)/(k′′(f) log k(f))), is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of absolute values of level-1 Fourier coefficients in terms of F2-degree. We further show that Chang’s lemma for the above-mentioned choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions witnessing their tightness. All the functions we construct are modifications of the Addressing function, where we replace certain input variables by suitable functions. Our final contribution is to construct Boolean functions f for which our lower bounds asymptotically match δ(f), and for any choice of the threshold t, the lower bound obtained from Chang’s lemma is asymptotically smaller than δ(f). Our results imply more refined deterministic one-way communication complexity upper bounds for XOR functions. Given the wide-ranging application of Chang’s lemma to areas like additive combinatorics, learning theory and communication complexity, we strongly feel that our refinements of Chang’s lemma will find many more applications

    Symmetry and quantum query-to-communication simulation

    Get PDF
    Buhrman, Cleve and Wigderson (STOC'98) showed that for every Boolean function f : {-1,1}^n to {-1,1} and G in {AND_2, XOR_2}, the bounded-error quantum communication complexity of the composed function f o G equals O(Q(f) log n), where Q(f) denotes the bounded-error quantum query complexity of f. This is in contrast with the classical setting, where it is easy to show that R^{cc}(f o G) We show that the log n overhead is not required when f is symmetric, generalizing a result of Aaronson and Ambainis for the Set-Disjointness function (Theory of Computing'05). This upper bound assumes a shared entangled state, though for most symmetric functions the assumed number of entangled qubits is less than the communication and hence could be part of the communication. To prove this, we design an efficient distributed version of noisy amplitude amplification that allows us to prove the result when f is the OR function. In view of our first result, one may ask whether the log n overhead in the BCW simulation can be avoided even when f is transitive. We give a strong negative answer by showing that the log n overhead is still necessary for some transitive functions even when we allow the quantum communication protocol an error probability that can be arbitrarily close to 1/2. We also give, among other things, a general recipe to construct functions for which the log n overhead is required in the BCW simulation in the bounded-error communication model, even if the parties are allowed to share an arbitrary prior entangled state for free.</p
    corecore