249 research outputs found
Dbl oncogene expression in MCF-10 A epithelial cells disrupts mammary acinar architecture, induces EMT and angiogenic factor secretion.
The proteins of the Dbl family are guanine nucleotide exchange factors (GEFs) of Rho GTPases and are known to be involved in cell growth regulation. Alterations of the normal function of these proteins lead to pathological processes such as developmental disorders, neoplastic transformation, and tumor metastasis. We have previously demonstrated that expression of Dbl oncogene in lens epithelial cells modulates genes encoding proteins involved in epithelial-mesenchymal-transition (EMT) and induces angiogenesis in the lens. Our present study was undertaken to investigate the role of Dbl oncogene in epithelial cells transformation, providing new insights into carcinoma progression. To assess how Dbl oncogene can modulate EMT, cell migration, morphogenesis, and expression of pro-apoptotic and angiogenic factors we utilized bi- and three-dimensional cultures of MCF-10░A cells. We show that upon Dbl expression MCF-10░A cells undergo EMT. In addition, we found that Dbl overexpression sustain
Regulation and structure of YahD, a copper-inducible α/β serine hydrolase of Lactococcus lactis IL1403
Lactococcus lactis IL1403 is a lactic acid bacterium that is used widely for food fermentation. Copper homeostasis in this organism chiefly involves copper secretion by the CopA copper ATPase. This enzyme is under the control of the CopR transcriptional regulator. CopR not only controls its own expression and that of CopA, but also that of an additional three operons and two monocistronic genes. One of the genes under the control of CopR, yahD, encodes an α/β-hydrolase. YahD expression was induced by copper and cadmium, but not by other metals or oxidative or nitrosative stress. The three-dimensional structure of YahD was determined by X-ray crystallography to a resolution of 1.88 Å. The protein was found to adopt an α/β-hydrolase fold with the characteristic Ser-His-Asp catalytic triad. Functional testing of YahD for a wide range of substrates for esterases, lipases, epoxide hydrolases, phospholipases, amidases and proteases was, however, unsuccessful. A copper-inducible serine hydrolase has not been described previously and YahD appears to be a new functional member of this enzyme famil
Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere
SO2 and H2S are the two most important gas-phase sulfur species emitted by volcanoes, with a global amount from non-explosive emissions of the order 10 Tg-S/yr. These gases are readily oxidized forming SO42− aerosols, which effectively scatter the incoming solar radiation and cool the surface. They also perturb atmospheric chemistry by enhancing the NOx to HNO3 heterogeneous conversion via hydrolysis on the aerosol surface of N2O5 and Br-Cl nitrates. This reduces formation of tropospheric O3 and the OH to HO2 ratio, thus limiting the oxidation of CH4 and increasing its lifetime. In addition to this tropospheric chemistry perturbation, there is also an impact on the NOx heterogeneous chemistry in the lower stratosphere, due to vertical transport of volcanic SO2 up to the tropical tropopause layer. Furthermore, the stratospheric O3 formation and loss, as well as the NOx budget, may be slightly affected by the additional amount of upward diffused solar radiation and consequent increase of photolysis rates. Two multi-decadal time-slice runs of a climate-chemistry-aerosol model have been designed for studying these chemical-radiative effects. A tropopause mean global net radiative flux change (RF) of −0.23 W·m−2 is calculated (including direct and indirect aerosol effects) with a 14% increase of the global mean sulfate aerosol optical depth. A 5–15 ppt NOx decrease is found in the mid-troposphere subtropics and mid-latitudes and also from pole to pole in the lower stratosphere. The tropospheric NOx perturbation triggers a column O3 decrease of 0.5–1.5 DU and a 1.1% increase of the CH4 lifetime. The surface cooling induced by solar radiation scattering by the volcanic aerosols induces a tropospheric stabilization with reduced updraft velocities that produce ice supersaturation conditions in the upper troposphere. A global mean 0.9% decrease of the cirrus ice optical depth is calculated with an indirect RF of −0.08 W·m−2
Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species
The radiative perturbation associated to stratospheric aerosols from major explosive volcanic eruptions may induce significant changes in stratospheric dynamics. The aerosol heating rates warm up the lower stratosphere and cause a westerly wind anomaly, with additional tropical upwelling. Large scale transport of stratospheric trace species may be perturbed as a consequence of this intensified Brewer–Dobson circulation. The radiatively forced changes of the stratospheric circulation during the first two years after the eruption of Mt. Pinatubo (June 1991) may help explain the observed trend decline of long-lived greenhouse gases at surface stations (approximately −8 and −0.4 ppbv/year for CH4 and N2O, respectively). This decline is partly driven by the increased mid- to high-latitude downward flux at the tropopause and also by an increased isolation of the tropical pipe in the vertical layer near the tropopause, with reduced horizontal eddy mixing. Results from a climate-chemistry coupled model are shown for both long-lived trace species and the stratospheric age-of-air. The latter results to be younger by approximately 0.5 year at 30 hPa for 3–4 years after the June 1991 Pinatubo eruption, as a result of the volcanic aerosols radiative perturbation and is consistent with independent estimates based on long time series of in situ profile measurements of SF6 and CO2. Younger age of air is also calculated after Agung, El Chichon and Ruiz eruptions, as well as negative anomalies of the N2O growth rate at the extratropical tropopause layer. This type of analysis is made comparing the results of two ensembles of model simulations (1960–2005), one including stratospheric volcanic aerosols and their radiative interactions and a reference case where the volcanic aerosols do not interact with solar and planetary radiation
Stratospheric Aerosols from Major Volcanic Eruptions: A Composition-Climate Model Study of the Aerosol Cloud Dispersal and e-folding Time
Large explosive volcanic eruptions are capable of injecting considerable amounts of particles and sulfur gases above the tropopause, causing large increases in stratospheric aerosols. Five major volcanic eruptions after 1960 (i.e., Agung, St. Helens, El Chichon, Nevado del Ruiz and Pinatubo) have been considered in a numerical study conducted with a composition-climate coupled model including an aerosol microphysics code for aerosol formation and growth. Model results are compared between an ensemble of numerical simulations including volcanic aerosols and their radiative effects (VE) and a reference simulations ensemble (REF) with no radiative impact of the volcanic aerosols. Differences of VE-REF show enhanced diabatic heating rates; increased stratospheric temperatures and mean zonal westerly winds; increased planetary wave amplitude; and tropical upwelling. The impact on stratospheric upwelling is found to be larger when the volcanically perturbed stratospheric aerosol is confined to the tropics, as tends to be the case for eruptions which were followed by several months with easterly shear of the quasi-biennial oscillation (QBO), e.g., the Pinatubo case. Compared to an eruption followed by a period of westerly QBO, such easterly QBO eruptions are quite different, with meridional transport to mid- and high-latitudes occurring later, and at higher altitude, with a consequent decrease in cross-tropopause removal from the stratosphere, and therefore longer decay timescale. Comparing the model-calculated e-folding time of the volcanic aerosol mass during the first year after the eruptions, an increase is found from 8.1 and 10.3 months for El Chichon and Agung (QBO westerly shear), to 14.6 and 30.7 months for Pinatubo and Ruiz (QBO easterly shear). The corresponding e-folding time of the global-mean radiative flux changes goes from 9.1 and 8.0 months for El Chichon and Agung, to 28.7 and 24.5 months for Pinatubo and Ruiz
Integrating elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover mapping
ABSTRACTThe combination of elevation data together with multispectral high-resolution images is a new methodology for obtaining land use/land cover classification. It represents a step forward for both the accuracy and automation of LULC applications and allows users to setup thematic assignments through rules based on feature attributes and human expert interpretation of land usage. The synergy between different types of information means that LiDAR can give new hints at both the segmentation and hybrid classification steps, leading to a joint use of multispectral, spatial and elevation data. The output is a thematic map characterized by a custom-designed legend that is able to discriminate between land cover classes with similar spectral characteristics (level 3 of the CLC legend). Experimental results from a hilly farmland area with some urban structures (Musone river basin, Ancona, Italy) are used to highlight how the proposed methodology enhances land cover classification in heterogeneous environments
Stratospheric Ozone Response in Experiments G3 and G4 of the Geoengineering Model Intercomparison Project (GeoMIP)
Geoengineering with stratospheric sulfate aerosols has been proposed as a means of temporarily cooling the planet, alleviating some of the side effects of anthropogenic CO2 emissions. However, one of the known side effects of stratospheric injections of sulfate aerosols is a decrease in stratospheric ozone. Here we show results from two general circulation models and two coupled chemistry climate models that have simulated stratospheric sulfate aerosol geoengineering as part of the Geoengineering Model Intercomparison Project (GeoMIP). Changes in photolysis rates and upwelling of ozone-poor air in the tropics reduce stratospheric ozone, suppression of the NOx cycle increases stratospheric ozone, and an increase in available surfaces for heterogeneous chemistry modulates reductions in ozone. On average, the models show a factor 20-40 increase of the sulfate aerosol surface area density (SAD) at 50 hPa in the tropics with respect to unperturbed background conditions and a factor 3-10 increase at mid-high latitudes. The net effect for a tropical injection rate of 5 Tg SO2 per year is a decrease in globally averaged ozone by 1.1-2.1 DU in the years 2040-2050 for three models which include heterogeneous chemistry on the sulfate aerosol surfaces. GISS-E2-R, a fully coupled general circulation model, performed simulations with no heterogeneous chemistry and a smaller aerosol size; it showed a decrease in ozone by 9.7 DU. After the year 2050, suppression of the NOx cycle becomes more important than destruction of ozone by ClOx, causing an increase in total stratospheric ozone. Contribution of ozone changes in this experiment to radiative forcing is 0.23 W m-2 in GISS-E2-R and less than 0.1 W m-2 in the other three models. Polar ozone depletion, due to enhanced formation of both sulfate aerosol SAD and polar stratospheric clouds, results in an average 5 percent increase in calculated surface UV-B
ALMA reveals the molecular gas properties of five star-forming galaxies across the main sequence at 3
International audienceWe present the detection of CO(5-4) with S/N> 7 - 13 and a lower CO transition with S/N > 3 (CO(4-3) for 4 galaxies, and CO(3-2) for one) with ALMA in band 3 and 4 in five main sequence star-forming galaxies with stellar masses 3-6x10^10 M/M_sun at 3 < z < 3.5. We find a good correlation between the total far-infrared luminosity LFIR and the luminosity of the CO(5-4) transition L'CO(5-4), where L'CO(5-4) increases with SFR, indicating that CO(5-4) is a good tracer of the obscured SFR in these galaxies. The two galaxies that lie closer to the star-forming main sequence have CO SLED slopes that are comparable to other star-forming populations, such as local SMGs and BzK star-forming galaxies; the three objects with higher specific star formation rates (sSFR) have far steeper CO SLEDs, which possibly indicates a more concentrated episode of star formation. By exploiting the CO SLED slopes to extrapolate the luminosity of the CO(1-0) transition, and using a classical conversion factor for main sequence galaxies of alpha_CO = 3.8 M_sun(K km s^-1 pc^-2)^-1, we find that these galaxies are very gas rich, with molecular gas fractions between 60 and 80%, and quite long depletion times, between 0.2 and 1 Gyr. Finally, we obtain dynamical masses that are comparable with the sum of stellar and gas mass (at least for four out of five galaxies), allowing us to put a first constraint on the alpha_CO parameter for main sequence galaxies at an unprecedented redshift
SIT-REM: An Interoperable and Interactive Web Geographic Information System for Fauna, Flora and Plant Landscape Data Management
none10The main goal of the SIT-REM project is the design and the development of an interoperable web-GIS environment for the information retrieval and data editing/updating of the geobotanical and wildlife map of Marche Region. The vegetation, plant landscape and faunistic analysis allow the realization of a regional information system for wildlife-geobotanical data. A main characteristic of the SIT-REM is its flexibility and interoperability, in particular, its ability to be easily updated with the insertion of new types of environmental, faunal or socio-economic data and to generate analyses at any geographical (from regional to local) or quantitative level of detail. Different query levels obtain the latter: spatial queries, hybrid query builder and WMSs usable by means of a GIS. SIT-REM has been available online for more than a year and its use over this period has produced extensive data about users' experiences.. © 2014 by the authors; licensee MDPI, Basel, SwitzerlandFrontoni, Emanuele; Mancini, Adriano; Zingaretti, Primo; Malinverni, Eva; Pesaresi, Simone; Biondi, Edoardo; Pandolfi, Massimo; Marseglia, Maria; Sturari, Mirco; Zabaglia, ClaudioFrontoni, Emanuele; Mancini, Adriano; Zingaretti, Primo; Malinverni, Eva Savina; Pesaresi, Simone; Biondi, Edoardo; Pandolfi, Massimo; Marseglia, Maria; Sturari, Mirco; Zabaglia, Claudi
Increasing level of detail of buildings for improved simulation of 4D urban digital twin
Buildings represent a crucial component of urban morphology, and their accurate modeling is essential for a number of applications involving Urban Digital Twins. With respect to thermal simulation aiming to identify Urban Heat Islands, a trade-off between accurate modeling of a single building type and large-scale reconstruction of virtual city models needs to be found. In the proposed paper, we analyzed an Australian suburb containing approximately 1700 residential buildings with challenging roof structures. Building outlines are provided by geo-information data and converted into prismatic models of LOD1. Using airborne sensor data (digital orthophotos, high-resolution images, and digital surface models), we identified two ways to increase the LOD and thus, the accuracy of the simulation. Firstly, we used common Computer Aided Graphics software to model interactively a few selected buildings, a process denoted as geo-specific modeling. Here, the outlines were used as foundations for constructing the ground-level walls. We relied on airborne data to retrieve building heights and roof structures. Number of floors and positions of façade elements were modeled on standard typological assumptions and building practices. We developed an interface to import automatically LOD1- based data and to export LOD3 buildings into the simulation. Secondly, we reproduce these models to model other buildings of the dataset. For this so-called geo-typical modeling, a similarity measure based on the outlines was implemented. The final scene consists of triangles modeling LOD3 buildings, terrain, and trees, retrieved using machinelearning- based methods on land cover classification. Together with the semantic class, we store the geometrical and physical properties of every triangle. The environmental data (e.g., cloud coverage, air temperature) is available by means of the weather services. Surface temperature is modeled by considering conductive, convective, and radiative heat transfer. The simulation of updated LOD3 buildings shows a significantly increased realism of the temperature distribution in an urban area. It can used to verify sustainable design of appropriate morpho-typologies for a particular precinct in a given context
- …