13 research outputs found

    Applying the weighted horizontal magnetic gradient method to a simulated flaring Active Region

    Get PDF
    Here, we test the weighted horizontal magnetic gradient (WGMWG_M) as a flare precursor, introduced by Korsos et. al. (2015, ApJ, 802, L21), by applying it to a magneto-hydrodynamic (MHD) simulation of solar-like flares Chatterjee et. al. (2016, Physical Review Letters, 116, 10, 101101). The pre-flare evolution of the WGMWG_M and the behavior of the distance parameter between the area-weighted barycenters of opposite polarity sunspots at various heights is investigated in the simulated δ\delta-type sunspot. Four flares emanated from this sunspot. We found the optimum heights above the photosphere where the flare precursors of the WGMWG_M method are identifiable prior to each flare. These optimum heights agree reasonably well with the heights of the occurrence of flares identified from the analysis of their thermal and Ohmic heating signatures in the simulation. We also estimated the expected time of the flare onsets from the duration of the approaching-receding motion of the barycenters of opposite polarities before each single flare. The estimated onset time and the actual time of occurrence of each flare are in good agreement at the corresponding optimum heights. This numerical experiment further supports the use of flare precursors based on the WGMWG_M method
    corecore