44 research outputs found
Endoscopic vs Robotic Thyroidectomy: Which is Better?
published_or_final_versionSpringer Open Choice, 21 Feb 201
A comparison of surgical outcomes between endoscopic and robotically assisted thyroidectomy: the authors’ initial experience
Background: The gasless, transaxillary endoscopic thyroidectomy (GTET) offers a distinct advantage over the conventional open operation by leaving no visible neck scar, and in an attempt to improve its ergonomics and surgical outcomes, the robotically assisted thyroidectomy (RAT) was introduced. The RAT uses the same endoscopic route as the GTET but with the assistance of the da Vinci S robotic system. Excellent results for RAT have been reported, but it remains unclear whether RAT offers any potential benefits over GTET. Methods: From June to December 2009, 46 patients underwent endoscopic thyroidectomy. Of these patients, 39 had surgery without the robot (GTET) and 7 had surgery with the robot (RAT). Demographics, surgical indications, operative findings, and postoperative outcomes were compared between the two groups. All the patients were followed up for at least 6 months after surgery. Results: Patient demographics, surgical indications, and extent of resection were similar between the two groups. The median total procedure time was significantly longer for RAT (149 min) than for GTET (100 min; p = 0.018), but the contralateral recurrent laryngeal nerve was more likely to identified in RAT (100%) than in GTET (42.9%; p = 0.070). On the average, GTET needed one more surgical assistant than RAT (1 vs. 0; ppublished_or_final_versionSpringer Open Choice, 21 Feb 201
The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese
<p>Abstract</p> <p>Background</p> <p>Chemokines play important roles in inflammation and antiviral action. We examined whether polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS).</p> <p>Methods</p> <p>We tested the polymorphisms of <it>RANTES, IP-10 </it>and <it>Mig </it>for their associations with SARS in 495 Hong Kong Chinese SARS patients and 578 controls. Then we tried to confirm the results in 356 Beijing Chinese SARS patients and 367 controls.</p> <p>Results</p> <p><it>RANTES </it>-28 G allele was associated with SARS susceptibility in Hong Kong Chinese (<it>P </it>< 0.0001, OR = 2.80, 95%CI:2.11–3.71). Individuals with <it>RANTES </it>-28 CG and GG genotypes had a 3.28-fold (95%CI:2.32–4.64) and 3.06-fold (95%CI:1.47–6.39) increased risk of developing SARS respectively (<it>P </it>< 0.0001). This -28 G allele conferred risk of death in a gene-dosage dependent manner (<it>P </it>= 0.014) with CG and GG individuals having a 2.12-fold (95% CI: 1.11–4.06) and 4.01-fold (95% CI: 1.30–12.4) increased risk. For the replication of <it>RANTES </it>data in Beijing Chinese, the -28 G allele was not associated with susceptibility to SARS. However, -28 CG (OR = 4.27, 95%CI:1.64–11.1) and GG (OR = 3.34, 95%CI:0.37–30.7) were associated with admission to intensive care units or death due to SARS (<it>P </it>= 0.011).</p> <p>Conclusion</p> <p><it>RANTES </it>-28 G allele plays a role in the pathogenesis of SARS.</p
The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome
BACKGROUND: Cytokines play important roles in antiviral action. We examined whether polymorphisms of IFN-γ,TNF-α and IL-10 affect the susceptibility to and outcome of severe acute respiratory syndrome (SARS). METHODS: A case-control study was carried out in 476 Chinese SARS patients and 449 healthy controls. We tested the polymorphisms of IFN-γ,TNF-α and IL-10 for their associations with SARS. RESULTS: IFN-γ +874A allele was associated with susceptibility to SARS in a dose-dependent manner (P < 0.001). Individuals with IFN-γ +874 AA and AT genotype had a 5.19-fold (95% Confidence Interval [CI], 2.78-9.68) and 2.57-fold (95% CI, 1.35-4.88) increased risk of developing SARS respectively. The polymorphisms of IL-10 and TNF-α were not associated with SARS susceptibility. CONCLUSION: IFN-γ +874A allele was shown to be a risk factor in SARS susceptibility
Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan
AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Search for Gravitational Waves from Intermediate Mass Binary Black Holes
We present the results of a weakly modeled burst search for gravitational
waves from mergers of non-spinning intermediate mass black holes (IMBH) in the
total mass range 100--450 solar masses and with the component mass ratios
between 1:1 and 4:1. The search was conducted on data collected by the LIGO and
Virgo detectors between November of 2005 and October of 2007. No plausible
signals were observed by the search which constrains the astrophysical rates of
the IMBH mergers as a function of the component masses. In the most efficiently
detected bin centered on 88+88 solar masses, for non-spinning sources, the rate
density upper limit is 0.13 per Mpc^3 per Myr at the 90% confidence level.Comment: 13 pages, 4 figures: data for plots and archived public version at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62326, see also the
public announcement at http://www.ligo.org/science/Publication-S5IMBH
Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb(-1) of root s=13 TeV pp collisions with the ATLAS detector
A search is conducted for new resonances decaying into a W or Z boson and a 125 GeV Higgs boson in the νν¯¯¯bb¯¯, ℓ±νbb¯¯, and ℓ+ℓ−bb¯¯ final states, where ℓ± = e± or μ±, in pp collisions at s√=13 TeV. The data used correspond to a total integrated luminosity of 36.1 fb−1 collected with the ATLAS detector at the Large Hadron Collider during the 2015 and 2016 data-taking periods. The search is conducted by examining the reconstructed invariant or transverse mass distributions of W h and Zh candidates for evidence of a localised excess in the mass range of 220 GeV up to 5 TeV. No significant excess is observed and the results are interpreted in terms of constraints on the production cross-section times branching fraction of heavy W ′ and Z′ resonances in heavy-vector-triplet models and the CP-odd scalar boson A in two-Higgs-doublet models. Upper limits are placed at the 95% confidence level and range between 9.0 × 10−4 pb and 7.3 × 10−1 pb depending on the model and mass of the resonance