51 research outputs found

    Existence of positive solutions of a superlinear boundary value problem with indefinite weight

    Full text link
    We deal with the existence of positive solutions for a two-point boundary value problem associated with the nonlinear second order equation u+a(x)g(u)=0u''+a(x)g(u)=0. The weight a(x)a(x) is allowed to change its sign. We assume that the function g ⁣:[0,+[Rg\colon\mathopen{[}0,+\infty\mathclose{[}\to\mathbb{R} is continuous, g(0)=0g(0)=0 and satisfies suitable growth conditions, so as the case g(s)=spg(s)=s^{p}, with p>1p>1, is covered. In particular we suppose that g(s)/sg(s)/s is large near infinity, but we do not require that g(s)g(s) is non-negative in a neighborhood of zero. Using a topological approach based on the Leray-Schauder degree we obtain a result of existence of at least a positive solution that improves previous existence theorems.Comment: 12 pages, 4 PNG figure
    corecore