7 research outputs found

    Second-order amplitudes in loop quantum gravity

    Full text link
    We explore some second-order amplitudes in loop quantum gravity. In particular, we compute some second-order contributions to diagonal components of the graviton propagator in the large distance limit, using the old version of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to these terms. We find some peculiar phenomena in the large distance behavior of these amplitudes, related with the geometry of the generalized triangulations dual to the Feynman graphs of the corresponding group field theory. In particular, we point out a possible further difficulty with the old Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness, at least in some situations. The observation raises the question whether this difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure

    The EPRL intertwiners and corrected partition function

    Full text link
    Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the simplicity constraint? What is a complete form of the partition function written in terms of this parametrization? We prove that the EPRL map is injective for n-valent vertex in case when it is a map from SO(3) into SO(3)xSO(3) representations. We find, however, that the EPRL map is not isometric. In the consequence, in order to be written in a SU(2) amplitude form, the formula for the partition function has to be rederived. We do it and obtain a new, complete formula for the partition function. The result goes beyond the SU(2) spin-foam models framework.Comment: RevTex4, 15 pages, 5 figures; theorem of injectivity of EPRL map correcte

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    Spin-Foams for All Loop Quantum Gravity

    Full text link
    The simplicial framework of Engle-Pereira-Rovelli-Livine spin-foam models is generalized to match the diffeomorphism invariant framework of loop quantum gravity. The simplicial spin-foams are generalized to arbitrary linear 2-cell spin-foams. The resulting framework admits all the spin-network states of loop quantum gravity, not only those defined by triangulations (or cubulations). In particular the notion of embedded spin-foam we use allows to consider knotting or linking spin-foam histories. Also the main tools as the vertex structure and the vertex amplitude are naturally generalized to arbitrary valency case. The correspondence between all the SU(2) intertwiners and the SU(2)×\timesSU(2) EPRL intertwiners is proved to be 1-1 in the case of the Barbero-Immirzi parameter ∣γ∣≥1|\gamma|\ge 1, unless the co-domain of the EPRL map is trivial and the domain is non-trivial.Comment: RevTex4, 23 pages, 8 figures; important references added; minor corrections, version published in Class.Quant.Grav; theorem of injectivity of EPRL map correcte

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    The Spin Foam Approach to Quantum Gravity

    Get PDF
    This article reviews the present status of the spin foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently introduced new models for four dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of the 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.Comment: To appear in Living Reviews in Relativit
    corecore