5 research outputs found

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Vitamin D and COVID-19 susceptibility and severity in the COVID-19 Host Genetics Initiative: A Mendelian randomization study.

    No full text
    BackgroundIncreased vitamin D levels, as reflected by 25-hydroxy vitamin D (25OHD) measurements, have been proposed to protect against COVID-19 based on in vitro, observational, and ecological studies. However, vitamin D levels are associated with many confounding variables, and thus associations described to date may not be causal. Vitamin D Mendelian randomization (MR) studies have provided results that are concordant with large-scale vitamin D randomized trials. Here, we used 2-sample MR to assess evidence supporting a causal effect of circulating 25OHD levels on COVID-19 susceptibility and severity.Methods and findingsGenetic variants strongly associated with 25OHD levels in a genome-wide association study (GWAS) of 443,734 participants of European ancestry (including 401,460 from the UK Biobank) were used as instrumental variables. GWASs of COVID-19 susceptibility, hospitalization, and severe disease from the COVID-19 Host Genetics Initiative were used as outcome GWASs. These included up to 14,134 individuals with COVID-19, and up to 1,284,876 without COVID-19, from up to 11 countries. SARS-CoV-2 positivity was determined by laboratory testing or medical chart review. Population controls without COVID-19 were also included in the control groups for all outcomes, including hospitalization and severe disease. Analyses were restricted to individuals of European descent when possible. Using inverse-weighted MR, genetically increased 25OHD levels by 1 standard deviation on the logarithmic scale had no significant association with COVID-19 susceptibility (odds ratio [OR] = 0.95; 95% CI 0.84, 1.08; p = 0.44), hospitalization (OR = 1.09; 95% CI: 0.89, 1.33; p = 0.41), and severe disease (OR = 0.97; 95% CI: 0.77, 1.22; p = 0.77). We used an additional 6 meta-analytic methods, as well as conducting sensitivity analyses after removal of variants at risk of horizontal pleiotropy, and obtained similar results. These results may be limited by weak instrument bias in some analyses. Further, our results do not apply to individuals with vitamin D deficiency.ConclusionsIn this 2-sample MR study, we did not observe evidence to support an association between 25OHD levels and COVID-19 susceptibility, severity, or hospitalization. Hence, vitamin D supplementation as a means of protecting against worsened COVID-19 outcomes is not supported by genetic evidence. Other therapeutic or preventative avenues should be given higher priority for COVID-19 randomized controlled trials

    COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19

    No full text
    The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p

    A first update on mapping the human genetic architecture of COVID-19

    No full text
    corecore