45 research outputs found

    Antennal Mechanosensory Neurons Mediate Wing Motor Reflexes in Flying Drosophila

    Get PDF
    Although many behavioral studies have shown the importance of antennal mechanosensation in various aspects of insect flight control, the identities of the mechanosensory neurons responsible for these functions are still unknown. One candidate is the Johnston's organ (JO) neurons that are located in the second antennal segment and detect phasic and tonic rotations of the third antennal segment relative to the second segment. To investigate how different classes of JO neurons respond to different types of antennal movement during flight, we combined 2-photon calcium imaging with a machine vision system to simultaneously record JO neuron activity and the antennal movement from tethered flying fruit flies (Drosophila melanogaster). We found that most classes of JO neurons respond strongly to antennal oscillation at the wing beat frequency, but not to the tonic deflections of the antennae. To study how flies use input from the JO neurons during flight, we genetically ablated specific classes of JO neurons and examined their effect on the wing motion. Tethered flies flying in the dark require JO neurons to generate slow antiphasic oscillation of the left and right wing stroke amplitudes. However, JO neurons are not necessary for this antiphasic oscillation when visual feedback is available, indicating that there are multiple pathways for generating antiphasic movement of the wings. Collectively, our results are consistent with a model in which flying flies use JO neurons to detect increases in the wing-induced airflow and that JO neurons are involved in a response that decreases contralateral wing stoke amplitude

    Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila

    Get PDF
    Insects use feedback from a variety of sensory modalities, including mechanoreceptors on their antennae, to stabilize the direction and speed of flight. Like all arthropod appendages, antennae not only supply sensory information but may also be actively positioned by control muscles. However, how flying insects move their antennae during active turns and how such movements might influence steering responses are currently unknown. Here we examined the antennal movements of flying Drosophila during visually induced turns in a tethered flight arena. In response to both rotational and translational patterns of visual motion, Drosophila actively moved their antennae in a direction opposite to that of the visual motion. We also observed two types of passive antennal movements: small tonic deflections of the antenna and rapid oscillations at wing beat frequency. These passive movements are likely the result of wing-induced airflow and increased in magnitude when the angular distance between the wing and the antenna decreased. In response to rotational visual motion, increases in passive antennal movements appear to trigger a reflex that reduces the stroke amplitude of the contralateral wing, thereby enhancing the visually induced turn. Although the active antennal movements significantly increased antennal oscillation by bringing the arista closer to the wings, it did not significantly affect the turning response in our head-fixed, tethered flies. These results are consistent with the hypothesis that flying Drosophila use mechanosensory feedback to detect changes in the wing induced airflow during visually induced turns and that this feedback plays a role in regulating the magnitude of steering responses

    Aplicações da geometria espectral a gravitação anisotrópica

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, 2014.Com motivação nas recentes indicações de que gravidade quântica deve ter dimensão espectral dois, nesta dissertação estudou-se a interação entre o Princípio da Ação Espectral e teorias anisotrópicas de gravidade, como a Horava-Lifshitz. Primeiro revisam-se teorias modernas de gravitação anisotrópica, as quais acredita-se levar a teorias quânticas renormalizáveis, ao custo de perder invariância completa por difeomorfismo. Em seguida revisa-se o Princípio da Ação Espectral, o qual é uma prescrição para o cálculo de ações físicas em geometrias espectrais. Posteriormente, calculam-se kernels de calor para laplacianos anisotrópicos e encontra-se uma expressão exata para o fluxo de dimensão espectral do IR para o UV, para espaço-tempos planos. Em seguida, executase a decomposição ADM para a construção de um operador de Dirac anisotrópico, e indica-se um procedimento para o cálculo da Ação Espectral correspondente. Como consequência, restringem-se os parâmetros livres da gravitação anisotrópica de um valor na ordem de uma centena para apenas onze. _______________________________________________________________________________________ ABSTRACTMotivated by recent observations that quantum gravity should have spectral dimension two, in this dissertation we study the mathematical interplay between the Spectral Action Principle and anisotropic theories of gravity, such as Horava-Lifshitz. First, we review modern theories of anisotropic gravity, which are thought to lead to renormalizable quantum theories, at the cost of losing full diffeormorphism invariance. Then we review the Spectral Action Principle, which is a prescription to obtain physical actions in spectral geometries. Afterwards, we calculate heat kernels for anisotropic laplacians, and find an exact expression for the spectral dimension flow from the IR into the UV, for flat spacetimes. Next, we perform an ADM decomposition to construct the anisotropic Dirac operator, and indicate a procedure to calculate the corresponding Spectral Action. This leads us to a scheme to constraint the number of free parameters of anisotropic theories from the order of a hundred into only eleven

    Octopamine Neurons Mediate Flight-Induced Modulation of Visual Processing in Drosophila

    Get PDF
    Background: Activity-dependent modulation of sensory systems has been documented in many organisms and is likely to be essential for appropriate processing of information during different behavioral states. However, the mechanisms underlying these phenomena remain poorly characterized. Results: We investigated the role of octopamine neurons in the flight-dependent modulation observed in visual interneurons in Drosophila. The vertical system (VS) cells exhibit a boost in their response to visual motion during flight compared to quiescence. Pharmacological application of octopamine evokes responses in quiescent flies that mimic those observed during flight, and octopamine cells that project to the optic lobes increase in activity during flight. Using genetic tools to manipulate the activity of octopamine neurons, we find that they are both necessary and sufficient for the flight-induced visual boost. Conclusions: This study provides the first evidence that endogenous release of octopamine is involved in state-dependent modulation of visual interneurons in flies

    Ubiquitin-Specific Peptidase 46 (Usp46) Regulates Mouse Immobile Behavior in the Tail Suspension Test through the GABAergic System

    Get PDF
    The tail suspension test (TST) is widely recognized as a useful experimental paradigm for assessing antidepressant activity and depression-like behavior. We have previously identified ubiquitin-specific peptidase 46 (Usp46) as a quantitative trait gene responsible for decreasing immobility time in the TST in mice. This Usp46 mutation has a 3-bp deletion coding for lysine in the open reading frame, and we indicated that Usp46 is implicated in the regulation of the GABAergic system. However, it is not known precisely how the immobile behavior is regulated by the GABAergic system. Therefore, in the present study, we examined whether the immobility time is influenced by drugs affecting the action mediated by GABAA receptor using both 3-bp deleted (the Usp46 mutant) and null Usp46 (Usp46 KO) mice. Nitrazepam, an agonist at the benzodiazepine-binding site of the GABAA receptor, which potentiates the action of GABA, produced a dose-dependent increase in TST immobility time in the Usp46 mutant mice without affecting general behaviors. The Usp46 KO mice exhibited short immobility times comparable to the Usp46 mutant mice, which was also increased by nitrazepam administration. The effects of nitrazepam in the Usp46 mutant and KO mice were antagonized by flumazenil. These results indicate that the 3-bp deleted Usp46 mutation causes a loss-of-function phenotype, and that the GABAA receptor might participate in the regulation of TST immobility time

    Neural Representations of Airflow in Drosophila Mushroom Body

    Get PDF
    The Drosophila mushroom body (MB) is a higher olfactory center where olfactory and other sensory information are thought to be associated. However, how MB neurons of Drosophila respond to sensory stimuli other than odor is not known. Here, we characterized the responses of MB neurons to a change in airflow, a stimulus associated with odor perception. In vivo calcium imaging from MB neurons revealed surprisingly strong and dynamic responses to an airflow stimulus. This response was dependent on the movement of the 3rd antennal segment, suggesting that Johnston's organ may be detecting the airflow. The calyx, the input region of the MB, responded homogeneously to airflow on. However, in the output lobes of the MB, different types of MB neurons responded with different patterns of activity to airflow on and off. Furthermore, detailed spatial analysis of the responses revealed that even within a lobe that is composed of a single type of MB neuron, there are subdivisions that respond differently to airflow on and off. These subdivisions within a single lobe were organized in a stereotypic manner across flies. For the first time, we show that changes in airflow affect MB neurons significantly and these effects are spatially organized into divisions smaller than previously defined MB neuron types

    Post-Training Dephosphorylation of eEF-2 Promotes Protein Synthesis for Memory Consolidation

    Get PDF
    Memory consolidation, which converts acquired information into long-term storage, is new protein synthesis-dependent. As protein synthesis is a dynamic process that is under the control of multiple translational mechanisms, however, it is still elusive how these mechanisms are recruited in response to learning for memory consolidation. Here we found that eukaryotic elongation factor-2 (eEF-2) was dramatically dephosphorylated within 0.5–2 hr in the hippocampus and amygdala of mice following training in a fear-conditioning test, whereas genome-wide microarrays did not reveal any significant change in the expression level of the mRNAs for translational machineries or their related molecules. Moreover, blockade of NMDA receptors with MK-801 immediately following the training significantly impeded both the post-training eEF-2 dephosphorylation and memory retention. Notably, with an elegant sophisticated transgenic strategy, we demonstrated that hippocampus-specific overexpression of eEF-2 kinase, a kinase that specifically phosphorylates and hence inactivates eEF-2, significantly inhibited protein synthesis in the hippocampus, and this effects was more robust during an “ongoing” protein synthesis process. As a result, late phase long-term potentiation (L-LTP) in the hippocampus and long-term hippocampus-dependent memory in the mice were significantly impaired, whereas short-term memory and long-term hippocampus-independent memory remained intact. These results reveal a novel translational underpinning for protein synthesis pertinent to memory consolidation in the mammalian brain
    corecore