1,728 research outputs found
Motor deficits in schizophrenia quantified by nonlinear analysis of postural sway.
Motor dysfunction is a consistently reported but understudied aspect of schizophrenia. Postural sway area was examined in individuals with schizophrenia under four conditions with different amounts of visual and proprioceptive feedback: eyes open or closed and feet together or shoulder width apart. The nonlinear complexity of postural sway was assessed by detrended fluctuation analysis (DFA). The schizophrenia group (n = 27) exhibited greater sway area compared to controls (n = 37). Participants with schizophrenia showed increased sway area following the removal of visual input, while this pattern was absent in controls. Examination of DFA revealed decreased complexity of postural sway and abnormal changes in complexity upon removal of visual input in individuals with schizophrenia. Additionally, less complex postural sway was associated with increased symptom severity in participants with schizophrenia. Given the critical involvement of the cerebellum and related circuits in postural stability and sensorimotor integration, these results are consistent with growing evidence of motor, cerebellar, and sensory integration dysfunction in the disorder, and with theoretical models that implicate cerebellar deficits and more general disconnection of function in schizophrenia
Recommended from our members
Anatomic Fat Depots and Coronary Plaque Among Human Immunodeficiency Virus-Infected and Uninfected Men in the Multicenter AIDS Cohort Study.
Methods. In a cross-sectional substudy of the Multicenter AIDS Cohort Study, noncontrast cardiac computed tomography (CT) scanning for coronary artery calcium (CAC) scoring was performed on all men, and, for men with normal renal function, coronary CT angiography (CTA) was performed. Associations between fat depots (visceral adipose tissue [VAT], abdominal subcutaneous adipose tissue [aSAT], and thigh subcutaneous adipose tissue [tSAT]) with coronary plaque presence and extent were assessed with logistic and linear regression adjusted for age, race, cardiovascular disease (CVD) risk factors, body mass index (BMI), and human immunodeficiency virus (HIV) parameters. Results. Among HIV-infected men (n = 597) but not HIV-uninfected men (n = 343), having greater VAT was positively associated with noncalcified plaque presence (odds ratio [OR] = 1.04, P < .05), with a significant interaction (P < .05) by HIV serostatus. Human immunodeficiency virus-infected men had lower median aSAT and tSAT and greater median VAT among men with BMI <25 and 25-29.9 kg/m(2). Among HIV-infected men, VAT was positively associated with presence of coronary plaque on CTA after adjustment for CVD risk factors (OR = 1.04, P < .05), but not after additional adjustment for BMI. There was an inverse association between aSAT and extent of total plaque among HIV-infected men, but not among HIV-uninfected men. Lower tSAT was associated with greater CAC and total plaque score extent regardless of HIV serostatus. Conclusions. The presence of greater amounts of VAT and lower SAT may contribute to increased risk for coronary artery disease among HIV-infected persons
Interview with Laura Fortunato, Winner of the 2011 Gabriel W. Lasker Prize
An international jury composed of Michael Crawford (University of Kansas, USA), Dennis O\u27Rourke (University of Utah, USA), and Stephen Shennan (University College London, UK) has awarded the Gabriel Ward Lasker Prize 2011 to Dr. Laura Fortunato for her articles entitled Reconstructing the History of Residence Strategies in Indo-European–Speaking Societies and Reconstructing the History of Marriage Strategies in Indo-European–Speaking Societies considered as the best contribution to the 83rd volume of Human Biology (2011). Laura Fortunato is an Omidyar Fellow at the Santa Fe Institute in Santa Fe, New Mexico. She received her Ph.D. in anthropology from University College London in 2009; her doctoral research focused on the evolution of kinship and marriage systems. In particular, she has investigated the evolution of marriage strategies, wealth transfers at marriage, residence strategies, and inheritance strategies. Laura\u27s current research activities apply conceptual and methodological tools developed in evolutionary biology to a diverse range of topics in anthropology, from matrilineal kinship organization to cultural evolution
Unbiased Cosmological Parameter Estimation from Emission Line Surveys with Interlopers
The galaxy catalogs generated from low-resolution emission line surveys often
contain both foreground and background interlopers due to line
misidentification, which can bias the cosmological parameter estimation. In
this paper, we present a method for correcting the interloper bias by using the
joint-analysis of auto- and cross-power spectra of the main and the interloper
samples. In particular, we can measure the interloper fractions from the
cross-correlation between the interlopers and survey galaxies, because the true
cross-correlation must be negligibly small. The estimated interloper fractions,
in turn, remove the interloper bias in the cosmological parameter estimation.
For example, in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX)
low-redshift () [O II] {\AA} emitters contaminate
high-redshift () Lyman- line emitters. We demonstrate that
the joint-analysis method yields a high signal-to-noise ratio measurement of
the interloper fractions while only marginally increasing the uncertainties in
the cosmological parameters relative to the case without interlopers. We also
show the same is true for the high-latitude spectroscopic survey of Wide-Field
Infrared Survey Telescope (WFIRST) mission where contamination occurs between
the Balmer- line emitters at lower redshifts () and Oxygen
([O III] {\AA}) line emitters at higher redshifts ().Comment: 36 pages, 26 figure
3D Printing in Zero-G ISS Technology Demonstration
The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible through traditional manufacturing methods while offering cost-effective, high-precision, low-unit on-demand manufacturing. Thus, Additive Manufacturing capabilities are the foundation of an advanced manufacturing in space roadmap
Miniaturized data loggers and computer programming improve seabird risk and damage assessments for marine oil spills in Atlantic Canada
Obtaining useful information on marine birds that can aid in oil spill (and other hydrocarbon release) risk and damage assessments in offshore environments is challenging. Technological innovations in miniaturization have allowed archival data loggers to be deployed successfully on marine birds vulnerable to hydrocarbons on water. A number of species, including murres (both Common, Uria aalge, and Thick-billed, U. lomvia) have been tracked using geolocation
devices in eastern Canada, increasing our knowledge of the seasonality and colony-specific nature of their susceptibility to oil on water in offshore hydrocarbon production areas and major shipping lanes. Archival data tags are starting to resolve questions around behaviour of vulnerable seabirds at small spatial scales relevant to oil spill impact modelling, specifically to determine the duration and frequency at which birds fly at sea. Advances in data capture methods using voice activated software have eased the burden on seabird observers who are collecting
increasingly more detailed information on seabirds during ship-board and aerial transects. Computer programs that integrate seabird density and bird behaviour have been constructed, all with a goal of creating more credible seabird oil spill risk and damage assessments. In this paper, we discuss how each of these technological and computing innovations can help define critical inputs into seabird risk and damage assessments, and when combined, can provide a more realistic understanding of the impacts to seabirds from any hydrocarbon release
The Impact of Cell Phone Texting During Aerobic Exercise on Measures of Cognition
International Journal of Exercise Science 12(5): 646-656, 2019. This study assessed the effect of cell phone texting during a 30-minute bout of cycle ergometer exercise on measures of cognition (i.e., reaction time and accuracy). Twenty-eight college students participated in two conditions (cell phone and no cell phone). Reaction time and accuracy were assessed pre- and post-exercise with the use of the Stroop test. Reaction time was significantly worse (p \u3c 0.001) in the cell phone condition from pre- (1003.75 ± 178.04 ms) to post-exercise (1124.46 ± 238.55 ms). Reaction time was significantly better (p \u3c 0.001) in the no cell phone condition from pre- (1107.71 ± 229.54 ms) to post-exercise (953.86 ± 177.42 ms). Accuracy was significantly worse (p = 0.01) in the cell phone condition from pre- (97.61 ± 2.32) to post-exercise (94.04 ± 7.88). Accuracy was significantly better (p \u3c 0.001) in the no cell phone condition from pre- (94.82 ± 4.42) to post-exercise (97.39 ± 2.42). In conclusion, using your cell phone for texting can interfere with the cognitive benefits associated with reaction time and accuracy that are developed from participating in aerobic exercise
- …