9 research outputs found
Recommended from our members
The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial.
Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268
Use of cetuximab as an adjuvant agent to radiotherapy and surgery in recessive dystrophic epidermolysis bullosa with squamous cell carcinoma
In our RDEB-SCC cases, cetuximab was well tolerated and the initial metastases/recurrences responded, consistent with another case study on the use of cetuximab in patients with RDEB-SCC.3 Although the evidence supports concurrent use with radiotherapy in other cancers, one should carefully consider the severe acute cutaneous side-effects of radiotherapy before administering anti-EGFR treatments at the same time. The locally recurrent SCCs responded in these cases but the distant metastases relapsed, suggesting that cetuximab may be better used as a neoadjuvant in the early stages of SCC in RDEB.2 Chemotherapy in patients with RDEB should be used with caution as infection may rapidly intervene
Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer
Background:Docetaxel is the first-line chemotherapy for castration-resistant prostate cancer (CRPC). However, response rates are ?50% and determined quite late in the treatment schedule, thus non-responders are subjected to unnecessary toxicity. The potential of circulating microRNAs as early biomarkers of docetaxel response in CRPC patients was investigated in this study.Methods:Global microRNA profiling was performed on docetaxel-resistant and sensitive cell lines to identify candidate circulating microRNA biomarkers. Custom Taqman Array MicroRNA cards were used to measure the levels of 46 candidate microRNAs in plasma/serum samples, collected before and after docetaxel treatment, from 97 CRPC patients.Results:Fourteen microRNAs were associated with serum prostate-specific antigen (PSA) response or overall survival, according to Mann-Whitney U or log-rank tests. Non-responders to docetaxel and patients with shorter survival generally had high pre-docetaxel levels of miR-200 family members or decreased/unchanged post-docetaxel levels of miR-17 family members. Multivariate Cox regression with bootstrapping validation showed that pre-docetaxel miR-200b levels, post-docetaxel change in miR-20a levels, pre-docetaxel haemoglobin levels and visceral metastasis were independent predictors of overall survival when modelled together. Conclusions:Our study suggests that circulating microRNAs are potential early predictors of docetaxel chemotherapy outcome, and warrant further investigation in clinical trials.10 page(s
A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer
Lipids are known to influence tumour growth, inflammation and chemoresistance. However, the association of circulating lipids with the clinical outcome of metastatic castration-resistant prostate cancer (CRPC) is unknown. We investigated associations between the plasma lipidome and clinical outcome in CRPC. Lipidomic profiling by liquid chromatography-tandem mass spectrometry was performed on plasma samples from a Phase 1 discovery cohort of 96 CRPC patients. Results were validated in an independent Phase 2 cohort of 63 CRPC patients. Unsupervised analysis of lipidomic profiles (323 lipid species) classified the Phase 1 cohort into two patient subgroups with significant survival differences (HR 2.31, 95% CI 1.44-3.68, p = 0.0005). The levels of 46 lipids were individually prognostic and were predominantly sphingolipids with higher levels associated with poor prognosis. A prognostic three-lipid signature was derived (ceramide d18:1/24:1, sphingomyelin d18:2/16:0, phosphatidylcholine 16:0/16:0) and was also associated with shorter survival in the Phase 2 cohort (HR 4.8, 95% CI 2.06-11.1, p = 0.0003). The signature was an independent prognostic factor when modelled with clinicopathological factors or metabolic characteristics. The association of plasma lipids with CRPC prognosis suggests a possible role of these lipids in disease progression. Further research is required to determine if therapeutic modulation of the levels of these lipids by targeting their metabolic pathways may improve patient outcome
The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial
Tebotelimab, a bispecific PD-1×LAG-3 DART molecule that blocks both PD-1 and LAG-3, was investigated for clinical safety and activity in a phase 1 dose-escalation and cohort-expansion clinical trial in patients with solid tumors or hematologic malignancies and disease progression on previous treatment. Primary endpoints were safety and maximum tolerated dose of tebotelimab when administered as a single agent (n = 269) or in combination with the anti-HER2 antibody margetuximab (n = 84). Secondary endpoints included anti-tumor activity. In patients with advanced cancer treated with tebotelimab monotherapy, 68% (184/269) experienced treatment-related adverse events (TRAEs; 22% were grade ≥3). No maximum tolerated dose was defined; the recommended phase 2 dose (RP2D) was 600 mg once every 2 weeks. There were tumor decreases in 34% (59/172) of response-evaluable patients in the dose-escalation cohorts, with objective responses in multiple solid tumor types, including PD-1-refractory disease, and in LAG-3+ non-Hodgkin lymphomas, including CAR-T refractory disease. To enhance potential anti-tumor responses, we tested margetuximab plus tebotelimab. In patients with HER2+ tumors treated with tebotelimab plus margetuximab, 74% (62/84) had TRAEs (17% were grade ≥3). The RP2D was 600 mg once every 3 weeks. The confirmed objective response rate in these patients was 19% (14/72), including responses in patients typically not responsive to anti-HER2/anti-PD-1 combination therapy. ClinicalTrials.gov identifier: NCT03219268