764 research outputs found
Spectral universality of strong shocks accelerating charged particles
As a rule, the shock compression controls the spectrum of diffusively
accelerated particles. We argue that this is not so if the backreaction of
these particles on the shock structure is significant. We present a
self-similar solution in which the accelerated particles change the flow
structure near the shock so strongly that the total shock compression may
become arbitrarily large. Despite this, the energy spectrum behind the shock is
close to E^{-3/2} independently of anything at all.Comment: Submitted to ApJL, 4 pages, 1 figure, uses revtex and boxedep
Probing Nearby CR Accelerators and ISM Turbulence with Milagro Hot Spots
Both the acceleration of cosmic rays (CR) in supernova remnant shocks and
their subsequent propagation through the random magnetic field of the Galaxy
deem to result in an almost isotropic CR spectrum. Yet the MILAGRO TeV
observatory discovered a sharp ( arrival anisotropy of CR
nuclei. We suggest a mechanism for producing a weak and narrow CR beam which
operates en route to the observer. The key assumption is that CRs are scattered
by a strongly anisotropic Alfven wave spectrum formed by the turbulent cascade
across the local field direction. The strongest pitch-angle scattering occurs
for particles moving almost precisely along the field line. Partly because this
direction is also the direction of minimum of the large scale CR angular
distribution, the enhanced scattering results in a weak but narrow particle
excess. The width, the fractional excess and the maximum momentum of the beam
are calculated from a systematic transport theory depending on a single scale
which can be associated with the longest Alfven wave, efficiently
scattering the beam. The best match to all the three characteristics of the
beam is achieved at pc. The distance to a possible source of the beam
is estimated to be within a few 100pc. Possible approaches to determination of
the scale from the characteristics of the source are discussed. Alternative
scenarios of drawing the beam from the galactic CR background are considered.
The beam related large scale anisotropic CR component is found to be energy
independent which is also consistent with the observations.Comment: 2 figures, ApJ accepted version2 minor changes and correction
On the Structure and Scale of Cosmic Ray Modified Shocks
Strong astrophysical shocks, diffusively accelerating cosmic rays (CR) ought
to develop CR precursors. The length of such precursor is believed to
be set by the ratio of the CR mean free path to the shock speed,
i.e., , which is formally
independent of the CR pressure . However, the X-ray observations of
supernova remnant shocks suggest that the precursor scale may be significantly
shorter than which would question the above estimate unless the
magnetic field is strongly amplified and the gyroradius is strongly
reduced over a short (unresolved) spatial scale. We argue that while the CR
pressure builds up ahead of the shock, the acceleration enters into a strongly
nonlinear phase in which an acoustic instability, driven by the CR pressure
gradient, dominates other instabilities (at least in the case of low
plasma). In this regime the precursor steepens into a strongly nonlinear front
whose size scales with \emph{the CR pressure}as , where is the scale of
the developed acoustic turbulence, and is the ratio of CR to gas
pressure. Since , the precursor scale reduction may be strong
in the case of even a moderate gas heating by the CRs through the acoustic and
(possibly also) the other instabilities driven by the CRs.Comment: EPS 2010 paper, to appear in PPC
On the mechanism for breaks in the cosmic ray spectrum
The proof of cosmic ray (CR) origin in supernova remnants (SNR) must hinge on
full consistency of the CR acceleration theory with the observations; direct
proof is impossible because of the orbit stochasticity of CR particles. Recent
observations of a number of galactic SNR strongly support the SNR-CR connection
in general and the Fermi mechanism of CR acceleration, in particular. However,
many SNR expand into weakly ionized dense gases, and so a significant revision
of the mechanism is required to fit the data. We argue that strong ion-neutral
collisions in the remnant surrounding lead to the steepening of the energy
spectrum of accelerated particles by \emph{exactly one power}. The spectral
break is caused by a partial evanescence of Alfven waves that confine particles
to the accelerator. The gamma-ray spectrum generated in collisions of the
accelerated protons with the ambient gas is also calculated. Using the recent
Fermi spacecraft observation of the SNR W44 as an example, we demonstrate that
the parent proton spectrum is a classical test particle power law , steepening to at .Comment: APS talk to appear in PoP, 4 figure
Plus Charge Prevalence in Cosmic Rays: Room for Dark Matter in the Positron Spectrum
The unexpected energy spectrum of the positron/electron ratio is interpreted
astrophysically, with a possible exception of the 100-300 GeV range. The data
indicate that this ratio, after a decline between GeV, rises steadily
with a trend towards saturation at 200-400GeV. These observations (except for
the trend) appear to be in conflict with the diffusive shock acceleration (DSA)
mechanism, operating in a \emph{single} supernova remnant (SNR) shock. We argue
that ratio can still be explained by the DSA if positrons are
accelerated in a \emph{subset} of SNR shocks which: (i) propagate in clumpy gas
media, and (ii) are modified by accelerated CR \emph{protons}. The protons
penetrate into the dense gas clumps upstream to produce positrons and,
\emph{charge the clumps positively}. The induced electric field expels
positrons into the upstream plasma where they are shock-accelerated. Since the
shock is modified, these positrons develop a harder spectrum than that of the
CR electrons accelerated in other SNRs. Mixing these populations explains the
increase in the ratio at GeV. It decreases at GeV
because of a subshock weakening which also results from the shock modification.
Contrary to the expelled positrons, most of the antiprotons, electrons, and
heavier nuclei, are left unaccelerated inside the clumps. Scenarios for the
100-300 GeV AMS-02 fraction exceeding the model prediction, including, but not
limited to, possible dark matter contribution, are also discussed.Comment: 36 pages, 6 figure
- …