55 research outputs found

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Particle identification in ALICE : a Bayesian approach

    Get PDF
    Peer reviewe

    Analyzing powers of inelastic dp scattering in the energy region of Delta and Roper resonances excitation

    No full text
    A study of inelastic scattering of polarized 3.73 GeV/c deuterons on protons in the energy region of the Roper N*(1440) and the {DELTA}(1232) resonances excitation has been performed in an exclusive experiment at LNS (Laboratoire National SATURNE, Saclay, France) using the SPES-{pi} setup.Tensor and vector analyzing powers of pion production for the reactions d + p {\to} d + n + pi^{+}, d + p {\to} d + p + pi^{0}, d + p {\to} d + N + pi pi have been measured as functions of the squared deuteron 4-momentum transfer t, of the effective mass of the subsystems (N pi), (N pi pi) and of the pion emission angle. A strong dependence of these analyzing powers upon the pion emission angle is observed. It is found that A_{yy} values for the considered reaction channels are systematically larger than the known inclusive {p (d, d {\prime}) X} world data at the nearest beam energy

    SPES4-pi:installation for exclusive study of nuclear reactions

    No full text
    EI SEP PHASE ACCThe paper describes the spectrometric system “SPES4–π\pi” used at the National Laboratory Saturne (CE Saclay, France) for the exclusive study of the baryon resonance excitation in inelastic α and d scattering on the proton, as well as coherent pion production in charge exchange reactions. The system consists of the magnetic spectrometer SPES4 and two wide-aperture position-sensitive detector arrays, equipped with wire chambers and scintillator hodoscopes, installed around a large-gap C-shape dipole magnet

    清涼飮料税論

    Get PDF
    The production of J/\).psi\) and ψ(2S)\psi(2S) was measured with the ALICE detector in Pb-Pb collisions at the LHC. The measurement was performed at forward rapidity 2.5 < y < 4 \() down to zero transverse momentum \(p_{\rm T} in the dimuon decay channel. Inclusive J/\).psi\) yields were extracted in different centrality classes and the centrality dependence of the average pTp_{\rm T} is presented. The J/\).psi\) suppression, quantified with the nuclear modification factor RAAR_{\rm AA} , was studied as a function of centrality, transverse momentum and rapidity. Comparisons with similar measurements at lower collision energy and theoretical models indicate that the J/\).psi\) production is the result of an interplay between color screening and recombination mechanisms in a deconfined partonic medium, or at its hadronization. Results on the ψ(2S)\psi(2S) suppression are provided via the ratio of ψ(2S)\psi(2S) over J/\).psi\) measured in pp and Pb-Pb collisions

    ALICE: Physics Performance Report, Volume II

    No full text
    ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN(ch)/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, and protons (both pp and pA), which primarily provide reference data for the nucleus-nucleus collisions. In addition, the pp data will allow for a number of genuine pp physics studies. The detailed design of the different detector systems has been laid down in a number of Technical Design Reports issued between mid-1998 and the end of 2004. The experiment is currently under construction and will be ready for data taking with both proton and heavy-ion beams at the start-up of the LHC. Since the comprehensive information on detector and physics performance was last published in the ALICE Technical Proposal in 1996, the detector, as well as simulation, reconstruction and analysis software have undergone significant development. The Physics Performance Report (PPR) provides an updated and comprehensive summary of the performance of the various ALICE subsystems, including updates to the Technical Design Reports, as appropriate. The PPR is divided into two volumes. Volume I, published in 2004 (CERN/LHCC 2003-049, ALICE Collaboration 2004 J. Phys. G: Nucl. Part. Phys. 30 1517-1763), contains in four chapters a short theoretical overview and an extensive reference list concerning the physics topics of interest to ALICE, the experimental conditions at the LHC, a short summary and update of the subsystem designs, and a description of the offline framework and Monte Carlo event generators. The present volume, Volume II, contains the majority of the information relevant to the physics performance in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Following an introductory overview, Chapter 5 describes the combined detector performance and the event reconstruction procedures, based on detailed simulations of the individual subsystems. Chapter 6 describes the analysis and physics reach for a representative sample of physics observables, from global event characteristics to hard processes

    Femtoscopy of pp collisions at √s=0.9 and 7 TeV at the LHC with two-pion Bose-Einstein correlations

    No full text
    We report on the high statistics two-pion correlation functions from pp collisions at root s = 0.9 TeV and root s = 7 TeV, measured by the ALICE experiment at the Large Hadron Collider. The correlation functions as well as the extracted source radii scale with event multiplicity and pair momentum. When analyzed in the same multiplicity and pair transverse momentum range, the correlation is similar at the two collision energies. A three-dimensional femtoscopic analysis shows an increase of the emission zone with increasing event multiplicity as well as decreasing homogeneity lengths with increasing transverse momentum. The latter trend gets more pronounced as multiplicity increases. This suggests the development of space-momentum correlations, at least for collisions producing a high multiplicity of particles. We consider these trends in the context of previous femtoscopic studies in high-energy hadron and heavy-ion collisions and discuss possible underlying physics mechanisms. Detailed analysis of the correlation reveals an exponential shape in the outward and longitudinal directions, while the sideward remains a Gaussian. This is interpreted as a result of a significant contribution of strongly decaying resonances to the emission region shape. Significant nonfemtoscopic correlations are observed, and are argued to be the consequence of "mini-jet"-like structures extending to low p(t). They are well reproduced by the Monte-Carlo generators and seen also in pi(+)pi(-) correlations

    Exclusive J/psi Photoproduction off Protons in Ultraperipheral p-Pb Collisions at root s(NN)=5.02 TeV

    No full text
    We present the first measurement at the LHC of exclusive J/psi photoproduction off protons, in ultraperipheral proton-lead collisions at root s(NN) = 5.02 TeV. Events are selected with a dimuon pair produced either in the rapidity interval, in the laboratory frame, 2.5 J/psi + p) are 33.2 +/- 2.2(stat) +/- 3.2(syst) +/- 0.7(theor) nb in p-Pb and 284 +/- 36(stat)(-32)(+27)(syst) +/- 26(theor) nb in Pb-p collisions. We measure this process up to about 700 GeV in the gamma p center of mass, which is a factor of two larger than the highest energy studied at HERA. The data are consistent with a power law dependence of the J/psi photoproduction cross section in gamma p energies from about 20 to 700 GeV, or equivalently, from Bjorken x scaling variable between similar to 2 x 10(-2) and similar to 2 x 10(-5), thus indicating no significant change in the gluon density behavior of the proton between HERA and LHC energies

    K*(892)(0) and phi(1020) production in Pb-Pb collisions at root s(NN)=2.76 TeV

    No full text
    The yields of the K*(892)(0) and phi(1020) resonances are measured in Pb-Pb collisions at root s(NN) = 2.76 TeV through their hadronic decays using the ALICE detector. The measurements are performed in multiple centrality intervals at mid-rapidity (vertical bar y vertical bar < 0.5) in the transverse-momentum ranges 0.3 < p(T) < 5 GeV/c for the K*(892)(0) and 0.5 < p(T) < 5 GeV/c for the phi(1020). The yields of K*(892)(0) are suppressed in central Pb-Pb collisions with respect to pp and peripheral Pb-Pb collisions (perhaps due to rescattering of its decay products in the hadronic medium), while the longer-lived phi(1020) meson is not suppressed. These particles are also used as probes to study the mechanisms of particle production. The shape of the pT distribution of the phi(1020) meson, but not its yield, is reproduced fairly well by hydrodynamic models for central Pb-Pb collisions. In central Pb-Pb collisions at low and intermediate p(T), the p/phi(1020) ratio is flat in p(T), while the p/pi and phi(1020)/pi ratios show a pronounced increase and have similar shapes to each other. These results indicate that the shapes of the p(T) distributions of these particles in central Pb-Pb collisions are determined predominantly by the particle masses and radial flow. Finally, phi(1020) production in Pb-Pb collisions is enhanced, with respect to the yield in pp collisions and the yield of charged pions, by an amount similar to the Lambda and Xi
    corecore