5 research outputs found

    C-reactive protein for diagnosing late-onset infection in newborn infants

    Get PDF
    BACKGROUND: Late-onset infection is the most common serious complication associated with hospital care for newborn infants. Because confirming the diagnosis by microbiological culture typically takes 24 to 48 hours, the serum level of the inflammatory marker C-reactive protein (CRP) measured as part of the initial investigation is used as an adjunctive rapid test to guide management in infants with suspected late-onset infection. OBJECTIVES: To determine the diagnostic accuracy of serum CRP measurement in detecting late-onset infection in newborn infants. SEARCH METHODS: We searched electronic databases (MEDLINE, Embase, and Science Citation Index to September 2017), conference proceedings, previous reviews, and the reference lists of retrieved articles. SELECTION CRITERIA: We included cohort and cross-sectional studies evaluating the diagnostic accuracy of serum CRP levels for the detection of late-onset infection (occurring more than 72 hours after birth) in newborn infants. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed eligibility for inclusion, evaluated the methodological quality of included studies, and extracted data to estimate diagnostic accuracy using hierarchical summary receiver operating characteristic (SROC) models. We assessed heterogeneity by examining variability of study estimates and overlap of the 95% confidence interval (CI) in forest plots of sensitivity and specificity. MAIN RESULTS: The search identified 20 studies (1615 infants). Most were small, single-centre, prospective cohort studies conducted in neonatal units in high- or middle-income countries since the late 1990s. Risk of bias in the included studies was generally low with independent assessment of index and reference tests. Most studies used a prespecified serum CRP threshold level as the definition of a 'positive' index test (typical cut-off level between 5 mg/L and 10 mg/L) and the culture of a pathogenic micro-organism from blood as the reference standard.At median specificity (0.74), sensitivity was 0.62 (95% CI 0.50 to 0.73). Heterogeneity was evident in the forest plots but it was not possible to conduct subgroup or meta-regression analyses by gestational ages, types of infection, or types of infecting micro-organism. Covariates for whether studies used a predefined threshold or not, and whether studies used a standard threshold of between 5 mg/L and 10 mg/L, were not statistically significant. AUTHORS' CONCLUSIONS: The serum CRP level at initial evaluation of an infant with suspected late-onset infection is unlikely to be considered sufficiently accurate to aid early diagnosis or select infants to undergo further investigation or treatment with antimicrobial therapy or other interventions

    Tuning the Aggregation Behavior of Human Insulin in the Presence of Luteolin: An in Vitro and in Silico Approach

    No full text
    Protein misfolding and related formation of amyloid fibrils are associated with several conformational diseases, such as Alzheimer\u27s disease (AD), Parkinson\u27s disease (PD), Huntington\u27s disease (HD), prion diseases, and Diabetes mellitus, Type 2 (DM-II). Several molecules including antibiotics, polyphenols, flavonoids, anthraquinones, and other small molecules are implicated to modulate amyloid assembly. The stabilization of the native forms of the polypeptides and prevention of their misfolding and aggregation are of clinical and biotechnological importance. Among the natural flavonoids, luteolin is of great importance because of its therapeutic role against neuroinflammation. Herein, we have explored the inhibitory effect of luteolin (LUT) on aggregation of a model protein, human insulin (HI). To understand the molecular mechanism of the inhibition of aggregation of HI by LUT, we employed molecular simulation, UV–Vis, fluorescence, and circular dichroism (CD) spectroscopies along with the dynamic light scattering (DLS). The analysis of the tuning of the HI aggregation process by luteolin revealed that interaction of HI with LUT resulted in the decrease in binding of the various fluorescent dyes, such as thioflavin T (ThT) and 8-anilinonaphthalene-1-sulfonic acid (ANS) to this protein. Retention of the native-like CD spectra and resistance to the aggregation in the presence of LUT has confirmed the aggregation inhibitory potential of LUT. The maximum inhibitory effect was found at the protein-to-drug ratio of 1:12, and no significant change was observed beyond this concentration

    Circulation of single serotype of Dengue Virus (DENV-3) in New Delhi, India during 2016: A change in the epidemiological trend

    No full text
    Background: Dengue is a rapidly emerging arthropod borne viral infection affecting tropical and sub-tropical regions of the world. Dengue is an acute febrile illness but sometimes causes more fatal complications like dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). Delhi, the capital of India has become hyper endemic for dengue virus because all the four serotypes are circulating here. Methods: The present study describes the identification of dengue virus from clinical samples collected from the suspected dengue patients from New Delhi, India during 2016. The CprM region of Dengue virus genome was analyzed for phylogenetic, selection pressure and Shannon entropy analyses. Results: The present study reports circulation of a single serotype (DENV-3) in New Delhi, during 2016. The phylogenetic analysis revealed that Indian subcontinent (genotype III) of DENV-3 was circulating in Delhi during this period. Neutral selection pressure in the analyzed region revealed relatively conserved nature of this part of the Dengue virus genome. Amino acid at 31 was positively selected and had high entropy value suggesting probability of variation at this position. Conclusions: The changing trend in circulation of dengue virus serotypes necessitates the continuous epidemiological surveillance for the dengue outbreaks in this region. Keywords: Dengue virus, Epidemiology, Phylogenetic analysis, Selection pressure, Entropy analysi

    Computational Studies on Phylogeny and Drug Designing Using Molecular Simulations for COVID-19

    No full text
    Since the first appearance of a novel coronavirus pneumonia (NCP) caused by a novel human coronavirus, and especially after the infection started its rapid spread over the world causing the COVID-19 (coronavirus disease 2019) pandemics, a very substantial part of the scientific community is engaged in the intensive research dedicated to finding of the potential therapeutics to cure this disease. As repurposing of existing drugs represents the only instant solution for those infected with the virus, we have been working on utilization of the structure-based virtual screening method to find some potential medications. In this study, we screened a library of 646 FDA approved drugs against the receptor-binding domain of the SARS-CoV-2 spike (S) protein and the main protease of this virus. Scoring functions revealed that some of the anticancer drugs (such as Pazopanib, Irinotecan, and Imatinib), antipsychotic drug (Risperidone), and antiviral drug (Raltegravir) have a potential to interact with both targets with high efficiency. Further we performed molecular dynamics simulations to understand the evolution in protein upon interaction with drug. Also, we have performed a phylogenetic analysis of 43 different coronavirus strains infecting 12 different mammalian species
    corecore