5 research outputs found

    Value-Added Products from FGD Sulfite-Rich Scrubber Materials

    Get PDF
    According to the American Coal Ash Association, about 29.25 million tons of flue gas desulfurization (FGD) byproducts were produced in the USA in 2003. Out of 29.25 million tons, 17.35 million tons were sulfite-rich scrubber materials. At present, unlike its cousin FGD gypsum, the prospect for effective utilization of sulfite-rich scrubber materials is not bright. In fact, almost 16.9 million tons are leftover every year. In our pursuit to mitigate the liability of sulfite-rich FGD scrubber materials' disposal, we are attempting to develop value-added products that can commercially compete. More specifically, for this Innovative Concept Phase I project, we have the following objectives: to characterize the sulfite-rich scrubber material for toxic metals; to optimize the co-blending and processing of scrubber material and natural byproducts; to formulate and develop structural composites from sulfite-rich scrubber material; and to evaluate the composites' mechanical properties and compare them with current products on the market. After successfully demonstrating the viability of our research, a more comprehensive approach will be proposed to take these value-added materials to fruition

    Drying of Beulah-Zap Lignite

    Get PDF
    Lignite dried in a stream of dry nitrogen at moderate temperatures (20-80-degrees-C) loses water in two distinguishable modes. The first mode represents about 80-85% of the loss of moisture. The second represents the other 15-20% lost under these conditions. The rate follows a unimolecular mechanism (like radioactive decay) for each mode. The activation energy for the first mode is close to the heat of vaporization of water. The rate is dependent upon the gas flow around the sample and the weight (or thickness) of the sample. Work at Amoco Oil Company indicated that the oil yield was higher for the dried coal than for raw or partly dried lignite. Work at Southern Illinois University showed that the mechanism was the same when differential scanning calorimetry was used to follow the kinetics of drying. Other work at the University of Southern Mississippi showed that the physical structure of the lignite (measured by X-rav diffraction) is measurably different for the dried and raw materials
    corecore