13 research outputs found
Effect of piroxicam on lipid membranes : Drug encapsulation and gastric toxicity aspects
Uptake of piroxicam, a non-steroidal anti-inflammatory drug, from the intestines after oral intake is limited due to its low solubility and its wide use is associated with several side effects related to the gastrointestinal tract. In this study, all-atom molecular dynamics (MD) simulations and fluorescent spectroscopy were employed to investigate the interaction of piroxicam in neutral, zwitterionic, and cationic forms with lipid bilayers composed of phosphatidylcholine, cholesterol, and PEGylated lipids. Our study was aimed to assess the potential for encapsulation of piroxicam in liposomal carriers and to shed more light on the process of gastrointestinal tract injury by the drug. Through both the MD simulations and laser scanning confocal microscopy, we have demonstrated that all forms of piroxicam can associate with the lipid bilayers and locate close to the water-membrane interface. Conventional liposomes used in drug delivery are usually stabilized by the addition of cholesterol and have their bloodstream lifetime extended through the inclusion of PEGylated lipids in the formulation to create a protective polymer corona. For this reason, we tested the effect of these two modifications on the behavior of piroxicam in the membrane. When the bilayer was PEGylated, piroxicam localize to the PEG layer and within the lipid headgroup region. This suggests that PEGylated liposomes are capable of carrying a larger quantity of piroxicam than the conventional ones. (C) 2017 Elsevier B.V. All rights reserved.Peer reviewe
cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer
<p>Abstract</p> <p>Background</p> <p>Recently published data showed discrepancies beteween <it>P53 </it>cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers.</p> <p>Methods</p> <p>To this end, we analyzed 23 colorectal cancers for <it>P53 </it>mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry.</p> <p>Results</p> <p>We found <it>P53 </it>gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of <it>P53 </it>mRNA was present in samples with and without <it>P53 </it>mutations.</p> <p>Conclusion</p> <p>In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated <it>P53 </it>mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without <it>P53 </it>mutation (normal cells and cells showing <it>K-RAS </it>and/or <it>APC </it>but not <it>P53 </it>mutation) in samples presenting <it>P53 </it>mutation; 3, heterozygous or hemizygous mutations of <it>P53 </it>gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in <it>P53 </it>cDNA and DNA sequencing analysis.</p
Arrested neural and advanced mesenchymal differentiation of glioblastoma cells-comparative study with neural progenitors
<p>Abstract</p> <p>Background</p> <p>Although features of variable differentiation in glioblastoma cell cultures have been reported, a comparative analysis of differentiation properties of normal neural GFAP positive progenitors, and those shown by glioblastoma cells, has not been performed.</p> <p>Methods</p> <p>Following methods were used to compare glioblastoma cells and GFAP+NNP (NHA): exposure to neural differentiation medium, exposure to adipogenic and osteogenic medium, western blot analysis, immunocytochemistry, single cell assay, BrdU incorporation assay. To characterize glioblastoma cells <it>EGFR </it>amplification analysis, LOH/MSI analysis, and <it>P53 </it>nucleotide sequence analysis were performed.</p> <p>Results</p> <p><it>In vitro </it>differentiation of cancer cells derived from eight glioblastomas was compared with GFAP-positive normal neural progenitors (GFAP+NNP). Prior to exposure to differentiation medium, both types of cells showed similar multilineage phenotype (CD44+/MAP2+/GFAP+/Vimentin+/Beta III-tubulin+/Fibronectin+) and were positive for SOX-2 and Nestin. In contrast to GFAP+NNP, an efficient differentiation arrest was observed in all cell lines isolated from glioblastomas. Nevertheless, a subpopulation of cells isolated from four glioblastomas differentiated after serum-starvation with varying efficiency into derivatives indistinguishable from the neural derivatives of GFAP+NNP. Moreover, the cells derived from a majority of glioblastomas (7 out of 8), as well as GFAP+NNP, showed features of mesenchymal differentiation when exposed to medium with serum.</p> <p>Conclusion</p> <p>Our results showed that stable co-expression of multilineage markers by glioblastoma cells resulted from differentiation arrest. According to our data up to 95% of glioblastoma cells can present <it>in vitro </it>multilineage phenotype. The mesenchymal differentiation of glioblastoma cells is advanced and similar to mesenchymal differentiation of normal neural progenitors GFAP+NNP.</p
Screening for THAP1 Mutations in Polish Patients with Dystonia Shows Known and Novel Substitutions.
The aim of this study was to assess the presence of DYT6 mutations in Polish patients with isolated dystonia and to characterize their phenotype. We sequenced THAP1 exons 1, 2 and 3 including exon-intron boundaries and 5'UTR fragment in 96 non-DYT1 dystonia patients. In four individuals single nucleotide variations were identified. The coding substitutions were: c. 238A>G (p.Ile80Val), found in two patients, and c.167A>G (p.Glu56Gly), found in one patient. The same variations were present also in the patients' symptomatic as well as asymptomatic relatives. Mutation penetration in the analyzed families was 50-66.7%. In the fourth patient, a novel c.-249C>A substitution in the promoter region was identified. The patient, initially suspected of idiopathic isolated dystonia, finally presented with pantothenate kinase 2-associated neurodegeneration phenotype and was a carrier of two PANK2 mutations. This is the first identified NBIA1 case carrying mutations in both PANK2 and THAP1 genes. In all symptomatic THAP1 mutation carriers (four probands and their three affected relatives) the first signs of dystonia occurred before the age of 23. A primary localization typical for DYT6 dystonia was observed in six individuals. Five subjects developed the first signs of dystonia in the upper limb. In one patient the disease began from laryngeal involvement. An uncommon primary involvement of lower limb was noted in the THAP1 and PANK2 mutations carrier. Neither of these THAP1 substitutions were found in 150 unrelated healthy controls. To the contrary, we identified a heterozygous C/T genotype of c.57C>T single nucleotide variation (p.Pro19Pro, rs146087734) in one healthy control, but in none of the patients. Therefore, a previously proposed association between this substitution and DYT6 dystonia seems unlikely. We found also no significant difference between cases and controls in genotypes distribution of the two-nucleotide -237-236 GA>TT (rs370983900 & rs1844977763) polymorphism
Clinical characteristics of the study population.
<p>Clinical characteristics of the study population.</p
Clinical characteristics of <i>THAP1</i> mutations carriers.
<p>Clinical characteristics of <i>THAP1</i> mutations carriers.</p