14 research outputs found

    Equine endometrosis pathological features: are they dependent on NF-κB signaling pathway?

    Get PDF
    Research Areas: Agriculture ; Veterinary Sciences ; ZoologyEndometrosis is an important mares’ disease which considerably decreases their fertility. As classic endometrial classification methods might be insufficient for tissue pathological evaluation, further categorization into active/inactive and destructive/non-destructive types was developed by Hoffmann and others. This study aimed to compare NF-κB pathway genes transcription among histopathological types of endometrosis, following Hoffmann and co-authors’ classification. Endometrial samples, collected postmortem from cyclic mares (n = 100) in estrus or diestrus, were classified histologically and used for gene transcription assessment. Gene transcription of NF-κB subunits (RelA, NF-κB1, NF-κB2), pro-inflammatory molecules (MCP-1, IL-6), and hyaluronan synthases (HAS 1, HAS 2, HAS 3) was compared among endometrosis types (active, non-active, destructive, non-destructive). Most individual mRNA samples showed high expression of RelA, NF-κB1, and MCP-1 gene transcripts and the destructive type of endometrosis, simultaneously. The expression of RelA and NF-κB1 genes was higher in active destructive group than in the other groups only in the follicular phase, as well as being higher in the inactive destructive group than in the others, only in the mid-luteal phase. The increase in gene transcription of the NF-κB canonical activation pathway in destructive endometrosis may suggest the highest changes in extracellular matrix deposition. Moreover, the estrous cycle phase might influence fibrosis pathogenesis.info:eu-repo/semantics/publishedVersio

    Biomathematical pattern of EMG signal propagation in smooth muscle of the non-pregnant porcine uterus.

    No full text
    Uterine contractions are generated by myometrial smooth muscle cells (SMCs) that comprise most of the myometrial layer of the uterine wall. Aberrant uterine motility (i.e., hypo- or hyper-contractility or asynchronous contractions) has been implicated in the pathogenesis of infertility due to the failure of implantation, endometriosis and abnormal estrous cycles. The mechanism whereby the non-pregnant uterus initiates spontaneous contractions remains poorly understood. The aim of the present study was to employ linear synchronization measures for analyzing the pattern of EMG signal propagation (direction and speed) in smooth muscles of the non-pregnant porcine uterus in vivo using telemetry recording system. It has been revealed that the EMG signal conduction in the uterine wall of the non-pregnant sow does not occur at random but it rather exhibits specific directions and speed. All detectable EMG signals moved along the uterine horn in both cervico-tubal and tubo-cervical directions. The signal migration speed could be divided into the three main types or categories: i. slow basic migration rhythm (SBMR); ii. rapid basic migration rhythm (RBMR); and iii. rapid accessory migration rhythm (RAMR). In conclusion, the EMG signal propagation in smooth muscles of the porcine uterus in vivo can be assessed using a linear synchronization model. Physiological pattern of the uterine contractile activity determined in this study provides a basis for future investigations of normal and pathologicall myogenic function of the uterus

    The Pattern of Superficial Body Temperatures in Leisure Horses Lunged with Commonly Used Lunging Aids

    No full text
    Background: The natural head and neck position (HNP) of horses differs from the position in horse riding when bit is used. The special lunging aids (LAs) are applied in order to modify HNP. Different types of LAs have the potential to affect the work of horse muscles and the superficial thermographic patterns (STPs). The effects of thre LAs on STPs of neck, chest, back, and hindquarters were investigated. Methods: Sixteen leisure horses were lunged with freely moving head (FMH), rubber band (RB), chambon (CH), and triangle side reins (TRs). The thermographic images (n = 896) were analyzed before/after lunging for mean temperatures (Tmean) and minimum–maximum difference (Tdiff). Results: Superficial Tmean increased (p < 0.001) in cranial part of neck, back, thoracic area, and limbs after lunging regardless of LAs application or its type. In comparison to other LAs: With RB, Tmean was higher in regions of interest (ROIs) 2,7 and lower in ROIs 3–4 (p < 0.05); with CH, Tmean was higher in ROIs 2–4 and 7 (p < 0.01); and with TRs, Tmean was higher in ROIs 2–4,7,9–11 (p < 0.01). In ROIs 2–4 and 7, Tdiff was lower with LAs than with FMH (p < 0.01) and in ROIs 9–10 with TRs. Conclusions: The choice of LAs should be dictated by the expected effect; however, all LAs increase the quality of the leisure horse lunging. LA use is more desirable than lunging with FMH

    Fourier analysis of highly synchronized EMG signals.

    No full text
    <p>EMG signals from the corpus uteri (A, B) and left uterine horn (C, D) in time (A, C) and frequency (B, D) domains.</p

    EMG signals parameters (mean % ± SEM) of bursts in different topographic regions of uterus.

    No full text
    <p>EMG signals parameters (mean % ± SEM) of bursts in different topographic regions of uterus.</p

    The values (mean ± SEM) and the percentage (mean %) of bursts propagation speed along the uterus in relation to the total number of highly synchronized uterine contraction signals.

    No full text
    <p>The values (mean ± SEM) and the percentage (mean %) of bursts propagation speed along the uterus in relation to the total number of highly synchronized uterine contraction signals.</p

    Uterine EMG activity in the non-pregnant sow during estrous cycle

    No full text
    Abstract Background Uterine myoactivity is crucial for successful reproductive performance of the sow. Spontaneous contractions of the uterus are strictly controlled and coordinated. Uterine electromyographic (EMG) activity undergoes hormonal regulation with rapid and long-term effects. What is more, interstitial Cajal-like Cells (ICLC) appear essential for smooth muscle contractility in the reproductive tract where they are suspected to be playing a major role in generating, coordinating, modulating and synchronizing slow triggering waves. The aim of this study was to investigate the myoelectrical activity of sow’s uterus during estrus cycle. Results Study was conducted on 10 Polish Landrace sows. Propagation mechanisms and their connection with the uterine EMG activity were considered in correlation with expression of c-kit, progesterone and oxytocin receptors of the non-pregnant sow. ICLC were labeled with antibody directed against c-kit receptor and visualized by confocal microscopy and scanning cytometer for positive cells percentage assessment. EMG signal was recorded directly from the myometrium with telemetry transmitters and electrodes located in different topographic regions of reproductive tracts. The stages of estrus cycle were determined by monitoring levels of luteinizing hormone, progesterone and estrogen with radioimmunoassays. Significant differences of the EMG signal parameters between diestrus and estrus and the correlations with density of labelled receptors were demonstrated. Moreover, the electrophysiological studies indicated that ICLC in the myometrium in the tip of uterine horn may participate in the regulation of slow waves duration and frequency. Conclusions The pattern of EMG signal propagation in the wall of the non-pregnant porcine uterus occurs in an orderly, bidirectional fashion and at distinctive speed, with no differences between diestrus and estrus
    corecore